• Previous Article
    Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training
  • IPI Home
  • This Issue
  • Next Article
    Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles
doi: 10.3934/ipi.2020048

Reproducible kernel Hilbert space based global and local image segmentation

1. 

Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool, United Kingdom

2. 

Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve, University, Cleveland, OH 44106, USA

3. 

Liverpool Vascular & Endovascular Service, Royal Liverpool and Broadgreen University, Hospitals NHS Trust, Liverpool, L7 8XP, United Kingdom

Received  December 2019 Revised  May 2020 Published  August 2020

Image segmentation is the task of partitioning an image into individual objects, and has many important applications in a wide range of fields. The majority of segmentation methods rely on image intensity gradient to define edges between objects. However, intensity gradient fails to identify edges when the contrast between two objects is low. In this paper we aim to introduce methods to make such weak edges more prominent in order to improve segmentation results of objects of low contrast. This is done for two kinds of segmentation models: global and local. We use a combination of a reproducing kernel Hilbert space and approximated Heaviside functions to decompose an image and then show how this decomposition can be applied to a segmentation model. We show some results and robustness to noise, as well as demonstrating that we can combine the reconstruction and segmentation model together, allowing us to obtain both the decomposition and segmentation simultaneously.

Citation: Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, doi: 10.3934/ipi.2020048
References:
[1]

L. Ambrosio and V. Tortorelli, On the approximation of free discontinuity problems, Bollettino Dell'Unione Matematica Italiana. B, 6 (1992), 105-123.   Google Scholar

[2]

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, 43 (1990), 999-1036.  doi: 10.1002/cpa.3160430805.  Google Scholar

[3]

B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 106-118.  doi: 10.1109/TPAMI.2006.12.  Google Scholar

[4]

N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach, Communications in Computational Physics, 7 (2010), 759-778.  doi: 10.4208/cicp.2009.09.026.  Google Scholar

[5]

E. BaeJ. Yuan and X.-C. Tai, Global minimization for continuous multiphase partitioning problems using a dual approach, International Journal of Computer Vision, 92 (2011), 112-129.  doi: 10.1007/s11263-010-0406-y.  Google Scholar

[6]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, Energy Minimization Methods in Computer Vision and Pattern Recognition, 2134 (2001), 359-374.  doi: 10.1007/3-540-44745-8_24.  Google Scholar

[7]

Y. BoykovO. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1 (1999), 377-384.  doi: 10.1109/ICCV.1999.791245.  Google Scholar

[8]

X. BressonS. EsedoḡluP. VandergheynstJ.-P. Thiran and S. Osher, Fast global minimization of the active contour/snake model, Journal of Mathematical Imaging and Vision, 28 (2007), 151-167.  doi: 10.1007/s10851-007-0002-0.  Google Scholar

[9]

X. CaiR. Chan and T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding, SIAM Journal on Imaging Sciences, 6 (2013), 368-390.  doi: 10.1137/120867068.  Google Scholar

[10]

V. CasellesR. Kimmel and G. Sapiro, Geodesic active contours, International Journal of Computer Vision, 22 (1997), 61-79.  doi: 10.1109/ICCV.1995.466871.  Google Scholar

[11]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.   Google Scholar

[12]

T. F. ChanS. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM Journal on Applied Mathematics, 66 (2006), 1632-1648.  doi: 10.1137/040615286.  Google Scholar

[13]

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.  doi: 10.1109/83.902291.  Google Scholar

[14]

L.-J. DengW. Guo and T.-Z. Huang, Single-image super-resolution via an iterative reproducing kernel hilbert space method, IEEE Transactions on Circuits and Systems for Video Technology, 26 (2016), 2001-2014.  doi: 10.1109/TCSVT.2015.2475895.  Google Scholar

[15]

C. GoutC. Le Guyader and L. Vese, Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods, Numerical Algorithms, 39 (2005), 155-173.  doi: 10.1007/s11075-004-3627-8.  Google Scholar

[16]

J.-B. Hiriart-Urruty and C. Lemar{é}chal, Convex Analysis and Minimization Algorithms I: Fundamentals, volume 305., Springer Science & Business Media, 2013. Google Scholar

[17]

P. Jaccard, The distribution of flora in the apline zone.1, New Phytologist, 11 (1912), 37-50.   Google Scholar

[18]

S. H. KangB. Shafei and G. Steidl, Supervised and transductive multi-class segmentation using p-Laplacians and RKHS methods, Journal of Visual Communication and Image Representation, 25 (2014), 1136-1148.  doi: 10.1016/j.jvcir.2014.03.010.  Google Scholar

[19]

M. KassA. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[20]

C. LiC.-Y. KaoJ. C. Gore and Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing, 17 (2008), 1940-1949.  doi: 10.1109/TIP.2008.2002304.  Google Scholar

[21]

C. LiuM. Ng and T. Zeng, Weighted variational model for selective image segmentation with application to medical images, Pattern Recognition, 76 (2018), 367-379.  doi: 10.1016/j.patcog.2017.11.019.  Google Scholar

[22]

Z. Li and F. Malgouyres, Regularized non-local total variation and application in image restoration, Journal of Mathematical Imaging and Vision, 59 (2017), 296-317.  doi: 10.1007/s10851-017-0732-6.  Google Scholar

[23]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503.  Google Scholar

[24]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[25]

R. B. Potts, Some generalized order-disorder transformations, Mathematical Proceedings of the Cambridge Philosophical Society, 48 (1952), 106-109.  doi: 10.1017/S0305004100027419.  Google Scholar

[26]

M. RobertsK. Chen and K. L. Irion, A convex geodesic selective model for image segmentation, Journal of Mathematical Imaging and Vision, 61 (2019), 482-503.  doi: 10.1007/s10851-018-0857-2.  Google Scholar

[27]

M. Roberts and J. Spencer, Chan–vese reformulation for selective image segmentation, Journal of Mathematical Imaging and Vision, 61 (2019), 1173-1196.  doi: 10.1007/s10851-019-00893-0.  Google Scholar

[28]

J. Spencer and K. Chen, A convex and selective variational model for image segmentation, Communications in Mathematical Sciences, 13 (2015), 1453-1472.  doi: 10.4310/CMS.2015.v13.n6.a5.  Google Scholar

[29]

X.-F. WangD.-S. Huang and H. Xu, An efficient local chan–vese model for image segmentation, Pattern Recognition, 43 (2010), 603-618.  doi: 10.1016/j.patcog.2009.08.002.  Google Scholar

[30]

Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6 (2013), 1758-1789.  doi: 10.1137/120887795.  Google Scholar

[31]

J. Yuan, E. Bae, X.-C. Tai and Y. Boykov, A continuous max-flow approach to potts model, In European Conference on Computer Vision, Springer, 2010,379–392. Google Scholar

[32]

J. YuanE. BaeX.-C. Tai and Y. Boykov, A spatially continuous max-flow and min-cut framework for binary labeling problems, Numerische Mathematik, 126 (2014), 559-587.  doi: 10.1007/s00211-013-0569-x.  Google Scholar

[33]

H. ZhangY. Chen and J. Shi, Nonparametric image segmentation using Renyi's statistical dependence measure, Journal of Mathematical Imaging and Vision, 44 (2012), 330-340.  doi: 10.1007/s10851-012-0329-z.  Google Scholar

[34]

H. Zhao, A fast sweeping method for Eikonal equations, Mathematics of Computation, 74 (2005), 603-627.  doi: 10.1090/S0025-5718-04-01678-3.  Google Scholar

show all references

References:
[1]

L. Ambrosio and V. Tortorelli, On the approximation of free discontinuity problems, Bollettino Dell'Unione Matematica Italiana. B, 6 (1992), 105-123.   Google Scholar

[2]

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, 43 (1990), 999-1036.  doi: 10.1002/cpa.3160430805.  Google Scholar

[3]

B. Appleton and H. Talbot, Globally minimal surfaces by continuous maximal flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 106-118.  doi: 10.1109/TPAMI.2006.12.  Google Scholar

[4]

N. Badshah and K. Chen, Image selective segmentation under geometrical constraints using an active contour approach, Communications in Computational Physics, 7 (2010), 759-778.  doi: 10.4208/cicp.2009.09.026.  Google Scholar

[5]

E. BaeJ. Yuan and X.-C. Tai, Global minimization for continuous multiphase partitioning problems using a dual approach, International Journal of Computer Vision, 92 (2011), 112-129.  doi: 10.1007/s11263-010-0406-y.  Google Scholar

[6]

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, Energy Minimization Methods in Computer Vision and Pattern Recognition, 2134 (2001), 359-374.  doi: 10.1007/3-540-44745-8_24.  Google Scholar

[7]

Y. BoykovO. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1 (1999), 377-384.  doi: 10.1109/ICCV.1999.791245.  Google Scholar

[8]

X. BressonS. EsedoḡluP. VandergheynstJ.-P. Thiran and S. Osher, Fast global minimization of the active contour/snake model, Journal of Mathematical Imaging and Vision, 28 (2007), 151-167.  doi: 10.1007/s10851-007-0002-0.  Google Scholar

[9]

X. CaiR. Chan and T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding, SIAM Journal on Imaging Sciences, 6 (2013), 368-390.  doi: 10.1137/120867068.  Google Scholar

[10]

V. CasellesR. Kimmel and G. Sapiro, Geodesic active contours, International Journal of Computer Vision, 22 (1997), 61-79.  doi: 10.1109/ICCV.1995.466871.  Google Scholar

[11]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.   Google Scholar

[12]

T. F. ChanS. Esedoglu and M. Nikolova, Algorithms for finding global minimizers of image segmentation and denoising models, SIAM Journal on Applied Mathematics, 66 (2006), 1632-1648.  doi: 10.1137/040615286.  Google Scholar

[13]

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266-277.  doi: 10.1109/83.902291.  Google Scholar

[14]

L.-J. DengW. Guo and T.-Z. Huang, Single-image super-resolution via an iterative reproducing kernel hilbert space method, IEEE Transactions on Circuits and Systems for Video Technology, 26 (2016), 2001-2014.  doi: 10.1109/TCSVT.2015.2475895.  Google Scholar

[15]

C. GoutC. Le Guyader and L. Vese, Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods, Numerical Algorithms, 39 (2005), 155-173.  doi: 10.1007/s11075-004-3627-8.  Google Scholar

[16]

J.-B. Hiriart-Urruty and C. Lemar{é}chal, Convex Analysis and Minimization Algorithms I: Fundamentals, volume 305., Springer Science & Business Media, 2013. Google Scholar

[17]

P. Jaccard, The distribution of flora in the apline zone.1, New Phytologist, 11 (1912), 37-50.   Google Scholar

[18]

S. H. KangB. Shafei and G. Steidl, Supervised and transductive multi-class segmentation using p-Laplacians and RKHS methods, Journal of Visual Communication and Image Representation, 25 (2014), 1136-1148.  doi: 10.1016/j.jvcir.2014.03.010.  Google Scholar

[19]

M. KassA. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[20]

C. LiC.-Y. KaoJ. C. Gore and Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing, 17 (2008), 1940-1949.  doi: 10.1109/TIP.2008.2002304.  Google Scholar

[21]

C. LiuM. Ng and T. Zeng, Weighted variational model for selective image segmentation with application to medical images, Pattern Recognition, 76 (2018), 367-379.  doi: 10.1016/j.patcog.2017.11.019.  Google Scholar

[22]

Z. Li and F. Malgouyres, Regularized non-local total variation and application in image restoration, Journal of Mathematical Imaging and Vision, 59 (2017), 296-317.  doi: 10.1007/s10851-017-0732-6.  Google Scholar

[23]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503.  Google Scholar

[24]

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[25]

R. B. Potts, Some generalized order-disorder transformations, Mathematical Proceedings of the Cambridge Philosophical Society, 48 (1952), 106-109.  doi: 10.1017/S0305004100027419.  Google Scholar

[26]

M. RobertsK. Chen and K. L. Irion, A convex geodesic selective model for image segmentation, Journal of Mathematical Imaging and Vision, 61 (2019), 482-503.  doi: 10.1007/s10851-018-0857-2.  Google Scholar

[27]

M. Roberts and J. Spencer, Chan–vese reformulation for selective image segmentation, Journal of Mathematical Imaging and Vision, 61 (2019), 1173-1196.  doi: 10.1007/s10851-019-00893-0.  Google Scholar

[28]

J. Spencer and K. Chen, A convex and selective variational model for image segmentation, Communications in Mathematical Sciences, 13 (2015), 1453-1472.  doi: 10.4310/CMS.2015.v13.n6.a5.  Google Scholar

[29]

X.-F. WangD.-S. Huang and H. Xu, An efficient local chan–vese model for image segmentation, Pattern Recognition, 43 (2010), 603-618.  doi: 10.1016/j.patcog.2009.08.002.  Google Scholar

[30]

Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6 (2013), 1758-1789.  doi: 10.1137/120887795.  Google Scholar

[31]

J. Yuan, E. Bae, X.-C. Tai and Y. Boykov, A continuous max-flow approach to potts model, In European Conference on Computer Vision, Springer, 2010,379–392. Google Scholar

[32]

J. YuanE. BaeX.-C. Tai and Y. Boykov, A spatially continuous max-flow and min-cut framework for binary labeling problems, Numerische Mathematik, 126 (2014), 559-587.  doi: 10.1007/s00211-013-0569-x.  Google Scholar

[33]

H. ZhangY. Chen and J. Shi, Nonparametric image segmentation using Renyi's statistical dependence measure, Journal of Mathematical Imaging and Vision, 44 (2012), 330-340.  doi: 10.1007/s10851-012-0329-z.  Google Scholar

[34]

H. Zhao, A fast sweeping method for Eikonal equations, Mathematics of Computation, 74 (2005), 603-627.  doi: 10.1090/S0025-5718-04-01678-3.  Google Scholar

Figure 1.  Comparison of Geodesic and Euclidean distance constraints
Figure 2.  Left panel: 3D surface images of $ \psi $ of nine parameter pairs $ (\theta, c) $; right panel: the corresponding 2D images. In each panel, from left to right and then from top to bottom: $ ( \frac{4 \pi}{5} , \frac{51}{1024} ), ( \frac{4\pi}{5} , \frac{25}{64} ), ( \frac{4\pi}{5} , \frac{175}{256} ), ( \frac{6\pi}{5}, \frac{135}{1024} ), ( \frac{6\pi}{5}, \frac{1}{2} ), ( \frac{6\pi}{5}, \frac{25}{32} ), ( \frac{8\pi}{5}, \frac{5}{64} ) $, $ ( \frac{8\pi}{5}, \frac{75}{256} ), ( \frac{8\pi}{5}, \frac{75}{128} ) $
Figure 3.  The decomposition of the input image (top left), into the smooth parts (top middle) and edge parts (top right), obtained from RKHS model (8), and edge indicator function $ g(\Psi \beta) $ (bottom left). In comparison, we display the gradient of the image, $ |\nabla z| $ and the edge indicator function $ g(|\nabla z|) $ in the bottom middle and bottom right respectively
Figure 4.  Segmentation of white matter from MRI brain image. We show both the contour overlaid on the original image, and the associated binary segmentation result for each example. First column: segmentation using edge weighted Chan-Vese using $ |\nabla z| $ model (24). Second column: Edge weighted Chan-Vese model (24) using Canny ($ g = g_{\mathcal{C}} $). Third column: Cai et al. [9]. Fourth column: Proposed two stage global model (8) and (25). Final column: The proposed combined global segmentation model (26)
Figure 5.  Row 1: 3% noise, Row 2: 5% noise, Row 3: 7% noise, Row 4: 9% noise. We show both the contour overlaid on the original image, and the associated binary segmentation result for each example. First two columns: Using model (24). Final two columns: Combined model, algorithm (1)
Figure 6.  Geodesic distances computed using gradient (middle) and $ \Psi \beta $ (right)
Figure 7.  Row one: Original clean image and the user input. Row two: Image and result with 20% noise. Row three: Image and result with 40% noise. Row four: Image and result with 60% noise
Figure 8.  Segmentation of blood vessel
Figure 9.  Segmentation of blood vessel
Figure 10.  Result of the combined selective model
[1]

Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems & Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041

[2]

Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028

[3]

Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems & Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027

[4]

Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems & Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95

[5]

Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems & Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030

[6]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[7]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[8]

Lu Tan, Ling Li, Senjian An, Zhenkuan Pan. Nonlinear diffusion based image segmentation using two fast algorithms. Mathematical Foundations of Computing, 2019, 2 (2) : 149-168. doi: 10.3934/mfc.2019011

[9]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020351

[10]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[11]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020233

[12]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[13]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

[14]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020386

[15]

Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005

[16]

Jun Fan, Fusheng Lv, Lei Shi. An RKHS approach to estimate individualized treatment rules based on functional predictors. Mathematical Foundations of Computing, 2019, 2 (2) : 169-181. doi: 10.3934/mfc.2019012

[17]

Xiaoli Wang, Meihua Yang, Peter E. Kloeden. Sigmoidal approximations of a delay neural lattice model with Heaviside functions. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2385-2402. doi: 10.3934/cpaa.2020104

[18]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[19]

Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407

[20]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (36)
  • HTML views (94)
  • Cited by (0)

[Back to Top]