
-
Previous Article
Image fusion network for dual-modal restoration
- IPI Home
- This Issue
-
Next Article
LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging
Image retinex based on the nonconvex TV-type regularization
1. | School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China |
2. | Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China |
3. | Department of Mathematical Sciences, University of Liverpool, L693BX, United Kingdom |
Retinex theory is introduced to show how the human visual system perceives the color and the illumination effect such as Retinex illusions, medical image intensity inhomogeneity and color shadow effect etc.. Many researchers have studied this ill-posed problem based on the framework of the variation energy functional for decades. However, to the best of our knowledge, the existing models via the sparsity of the image based on the nonconvex $ \ell^p $-quasinorm were limited. To deal with this problem, this paper considers a TV$ _p $-HOTV$ _q $-based retinex model with $ p, q\in(0, 1) $. Specially, the TV$ _p $ term based on the total variation(TV) regularization can describe the reflectance efficiently, which has the piecewise constant structure. The HOTV$ _q $ term based on the high order total variation(HOTV) regularization can penalize the smooth structure called the illumination. Since the proposed model is non-convex, non-smooth and non-Lipschitz, we employ the iteratively reweighed $ \ell_1 $ (IRL1) algorithm to solve it. We also discuss some properties of our proposed model and algorithm. Experimental experiments on the simulated and real images illustrate the effectiveness and the robustness of our proposed model both visually and quantitatively by compared with some related state-of-the-art variational models.
References:
[1] |
R. Amestoy, E. Provenzi, M. Bertalmío and V. Caselles,
A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (2009), 458-474.
|
[2] |
M. Benning, F. Knoll, C. Schonlieb and T. Valkonen,
Preconditioned ADMM with nonlinear operator constraint, IFIP Conference on System Modeling and Optimization, 494 (2015), 117-126.
doi: 10.1007/978-3-319-55795-3_10. |
[3] |
M. Bertalmío, V. Caselles, E. Provenzi and A. Rizzi,
Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16 (2007), 1058-1072.
doi: 10.1109/TIP.2007.891777. |
[4] |
M. Bertalmío, V. Caselles and E. Provenzi,
Issues about retinex theory and contrast enhancement, International Journal of Computer Vision, 83 (2009), 101-119.
|
[5] |
A. Blake,
Boundary conditions for lightness computation in Mondrian world, Computer Vision Graphics Image Processing, 32 (1985), 314-327.
doi: 10.1016/0734-189X(85)90054-4. |
[6] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/9781601984616. |
[7] |
E. Candes, M. Wakin and S. Boyd,
Enhancing sparsity by reweighted $l_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x. |
[8] |
T. Cooper and F. Baqai,
Analysis and extensions of the frankle-mccann retinex algorithm, Journal of Electronic Imaging, 13 (2004), 85-93.
doi: 10.1117/1.1636182. |
[9] |
X. Chen, F. Xu and Y. Ye,
Lower bound theory of nonzero entries in solutions of $\ell^2-\ell^p$ minimization, SIAM Journal on Scientific Computing, 32 (2010), 2832-2852.
doi: 10.1137/090761471. |
[10] |
X. Chen and W. Zhou,
Convergence of the reweighted $\ell_1$ minimization algorithm for $\ell_2-\ell^p$ minimization, Journal Computational Optimization and Application, 59 (2014), 47-61.
doi: 10.1007/s10589-013-9553-8. |
[11] |
J. Douglas and H. Rachford,
On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4. |
[12] |
Y. Duan, H. Chang, W. Huang, J. Zhou, Z. Lu and C. Wu,
The $L_0$ regularized Mumford-Shah model for bias correction and segmentation of medical images, IEEE Transactions on Image Processing, 24 (2015), 3927-3938.
doi: 10.1109/TIP.2015.2451957. |
[13] |
D. Gabay and B. Mercier,
A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1. |
[14] |
N. Galatsanos and A. Katsaggelos,
Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, 1 (1992), 322-336.
doi: 10.1109/83.148606. |
[15] |
D. Ghilli and K. Kunisch,
On monotone and primal-dual active set schemes for $\ell^p$-type problems, $p\in(0, 1]$, Computational Optimizationand Applications, 72 (2019), 45-85.
doi: 10.1007/s10589-018-0036-9. |
[16] |
R. Glowinski, S. Luo and X. Tai,
Fast operator-splitting algorithms for variational imaging models: Some recent developments, Handbook of Numerical Analysis, 20 (2019), 191-232.
|
[17] |
R. Glowinski, S. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, Cham, 2016.
doi: 10.1007/978-3-319-41589-5. |
[18] |
Z. Gu, F. Li and X. Lv,
A detail preserving variational model for image Retinex, Applied Mathematical Modelling, 68 (2019), 643-661.
doi: 10.1016/j.apm.2018.11.052. |
[19] |
P. Hansen and D. Leary,
The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503.
doi: 10.1137/0914086. |
[20] |
B. Horn,
Determining lightness from an image, Computer Graphics Image Processing, 3 (1974), 277-299.
doi: 10.1016/0146-664X(74)90022-7. |
[21] |
B. Horn,
Understanding image intensities, Artificial Intelligence, 8 (1977), 201-231.
doi: 10.1016/0004-3702(77)90020-0. |
[22] |
D. Jobson, Z. Rahman and G. Woodell,
Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6 (1997), 451-462.
doi: 10.1109/83.557356. |
[23] |
D. Jobson, Z. Rahman and G. Woodell,
A multiscale Retinex for bridging the gap between color image and the human observation of scenes, IEEE Transactions on Image Processing, 6 (2002), 965-976.
doi: 10.1109/83.597272. |
[24] |
Y. Jung, T. Jeong and S. Yun,
Non-convex TV denoising corrupted by impulse noise, Inverse Problems and Imaging, 11 (2017), 689-702.
doi: 10.3934/ipi.2017032. |
[25] |
R. Kimmel, M. Elad, D. Shaked, R. Keshet and I. Sobel,
A variational framework for retinex, International Journal of Computer Vision, 52 (2003), 7-23.
|
[26] |
M. Lai, Y. Xu and W. Yin,
Improved iteratively reweighted least squares for unconstrained smoothed $\ell_q$ minimization, SIAM Journal on Numerical Analysis, 51 (2013), 927-957.
doi: 10.1137/110840364. |
[27] |
E. Land and J. Mccann,
Lightness and Retinex theory, Journal of the Optical Society of America, 61 (1971), 1-11.
|
[28] |
E. Land,
The Retinex theory of color vision, Scientific American, 237 (1977), 108-128.
|
[29] |
E. Land,
An alternative technique for the computation of the designator in the retinex theory of color vision, Proceedings of the National Academy of Sciences, 83 (1986), 3078-3080.
|
[30] |
M. Langer and S. Zucker,
Spatially varying illumination: A computational model of converging and diverging sources, European Conference on Computer Vision, 801 (1994), 226-232.
doi: 10.1007/BFb0028356. |
[31] |
A. Lanza1, S. Morigi1 and F. Sgallari,
Constrained $TV_p-\ell_2$ model for image restoration, Journal of Scientific Computing, 68 (2016), 64-91.
doi: 10.1007/s10915-015-0129-x. |
[32] |
L. Liu, Z. Pang and Y. Duan,
Retinex based on exponent-type total variation scheme, Inverse Problems and Imaging, 12 (2018), 1199-1217.
doi: 10.3934/ipi.2018050. |
[33] |
Z. Liu, C. Wu and Y. Zhao,
A new globally convergent algorithm for non-Lipschitz $\ell^p-\ell^q$ minimization, Advances in Computational Mathematics, 45 (2019), 1369-1399.
doi: 10.1007/s10444-019-09668-y. |
[34] |
J. Liang and X. Zhang,
Retinex by higher order total variation ${L}^1$ decomposition, Journal of Mathematical Imaging and Vision, 52 (2015), 345-355.
doi: 10.1007/s10851-015-0568-x. |
[35] |
Z. Lu,
Iterative reweighted minimization methods for $\ell^p$ regularized unconstrained nonlinear programming, Mathematical Programming: Series A and B, 147 (2014), 277-307.
doi: 10.1007/s10107-013-0722-4. |
[36] |
D. Marini and A. Rizzi,
A computational approach to color adaptation effects, Image and Vision Computing, 18 (2000), 1005-1014.
|
[37] |
W. Ma and S. Osher,
A TV bregman iterative model of retinex theory, Inverse Problems and Imaging, 6 (2012), 697-708.
doi: 10.3934/ipi.2012.6.697. |
[38] |
J. Mccann, Lessons learned from mondrians applied to real images and color gamuts, Proceedings of the IST/SID 7th Color Imaging Conference, 1999, 1–8. |
[39] |
J. Morel, A. Petro and C. Sbert, Fast implementation of color constancy algorithms, Proceedings of SPIE, 7241, 2009. |
[40] |
J. Morel, A. Petro and C. Sbert,
A PDE formalization of retinex theory, IEEE Transactions on Image Processing, 19 (2010), 2825-2837.
doi: 10.1109/TIP.2010.2049239. |
[41] |
V. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5280-1. |
[42] |
M. Ng and W. Wang,
A total variation model for retinex, SIAM Journal on Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588. |
[43] |
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock,
On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8 (2015), 331-372.
doi: 10.1137/140971518. |
[44] |
J. Oliveira, J. Dias and M. Figueiredo,
Adaptive total variation image deblurring: A majorizationCminimization approach, Signal Processing, 89 (2009), 1683-1693.
|
[45] |
H. Pan, Y. Wen and H. Zhu,
A regularization parameter selection model for total variation based image noise removal, Applied Mathematical Modelling, 68 (2019), 353-367.
doi: 10.1016/j.apm.2018.11.032. |
[46] |
E. Provenzi, D. Marini, L. De Carli and A. Rizzi,
Mathematical definition and analysis of the retinex algorithm, Journal of the Optical Society of America A, 22 (2005), 2613-2621.
doi: 10.1364/JOSAA.22.002613. |
[47] |
S. Sabacha and M. Teboulle,
Lagrangian methods for composite optimization, Handbook of Numerical Analysis, 20 (2019), 401-436.
|
[48] |
A. Theljani and K. Chen, A Nash game based variational model for joint image intensity correction and registration to deal with varying illumination, Inverse Problems, 36 (2020), 034002. |
[49] |
Y. Wen and R. Chan,
Using generalized cross validation to select regularization parameter for total variation regularization problems, Inverse Problems and Imaging, 12 (2018), 1103-1120.
doi: 10.3934/ipi.2018046. |
[50] |
W. Wang and C. He,
A variational model with barrier functionals for Retinex, SIAM Journal on Imaging Sciences, 8 (2015), 1955-1980.
doi: 10.1137/15M1006908. |
[51] |
J. Zhang, R. Chen, C. Deng and S. Wang,
Fast linearized augmented method for Euler's elastica model, Numerical Mathematics:Theory, Methods and Applications, 10 (2017), 98-115.
doi: 10.4208/nmtma.2017.m1611. |
[52] |
X. Zhang, Y. Shi, Z. Pang and Y. Zhu,
Fast algorithm for image denoising with different boundary conditions, Journal of the Franklin Institute, 354 (2017), 4595-4614.
doi: 10.1016/j.jfranklin.2017.04.011. |
[53] |
D. Zosso, G. Tran and S. Osher, A unifying retinex model based on non-local differential operators, Computational Imaging XI, 865702, 2013.. |
[54] |
W. Zuo, D. Meng, L. Zhang, X. Feng and D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, IEEE International Conference on Computer Vision, 2013,217–224. |
show all references
References:
[1] |
R. Amestoy, E. Provenzi, M. Bertalmío and V. Caselles,
A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (2009), 458-474.
|
[2] |
M. Benning, F. Knoll, C. Schonlieb and T. Valkonen,
Preconditioned ADMM with nonlinear operator constraint, IFIP Conference on System Modeling and Optimization, 494 (2015), 117-126.
doi: 10.1007/978-3-319-55795-3_10. |
[3] |
M. Bertalmío, V. Caselles, E. Provenzi and A. Rizzi,
Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16 (2007), 1058-1072.
doi: 10.1109/TIP.2007.891777. |
[4] |
M. Bertalmío, V. Caselles and E. Provenzi,
Issues about retinex theory and contrast enhancement, International Journal of Computer Vision, 83 (2009), 101-119.
|
[5] |
A. Blake,
Boundary conditions for lightness computation in Mondrian world, Computer Vision Graphics Image Processing, 32 (1985), 314-327.
doi: 10.1016/0734-189X(85)90054-4. |
[6] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/9781601984616. |
[7] |
E. Candes, M. Wakin and S. Boyd,
Enhancing sparsity by reweighted $l_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x. |
[8] |
T. Cooper and F. Baqai,
Analysis and extensions of the frankle-mccann retinex algorithm, Journal of Electronic Imaging, 13 (2004), 85-93.
doi: 10.1117/1.1636182. |
[9] |
X. Chen, F. Xu and Y. Ye,
Lower bound theory of nonzero entries in solutions of $\ell^2-\ell^p$ minimization, SIAM Journal on Scientific Computing, 32 (2010), 2832-2852.
doi: 10.1137/090761471. |
[10] |
X. Chen and W. Zhou,
Convergence of the reweighted $\ell_1$ minimization algorithm for $\ell_2-\ell^p$ minimization, Journal Computational Optimization and Application, 59 (2014), 47-61.
doi: 10.1007/s10589-013-9553-8. |
[11] |
J. Douglas and H. Rachford,
On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4. |
[12] |
Y. Duan, H. Chang, W. Huang, J. Zhou, Z. Lu and C. Wu,
The $L_0$ regularized Mumford-Shah model for bias correction and segmentation of medical images, IEEE Transactions on Image Processing, 24 (2015), 3927-3938.
doi: 10.1109/TIP.2015.2451957. |
[13] |
D. Gabay and B. Mercier,
A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1. |
[14] |
N. Galatsanos and A. Katsaggelos,
Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, 1 (1992), 322-336.
doi: 10.1109/83.148606. |
[15] |
D. Ghilli and K. Kunisch,
On monotone and primal-dual active set schemes for $\ell^p$-type problems, $p\in(0, 1]$, Computational Optimizationand Applications, 72 (2019), 45-85.
doi: 10.1007/s10589-018-0036-9. |
[16] |
R. Glowinski, S. Luo and X. Tai,
Fast operator-splitting algorithms for variational imaging models: Some recent developments, Handbook of Numerical Analysis, 20 (2019), 191-232.
|
[17] |
R. Glowinski, S. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, Cham, 2016.
doi: 10.1007/978-3-319-41589-5. |
[18] |
Z. Gu, F. Li and X. Lv,
A detail preserving variational model for image Retinex, Applied Mathematical Modelling, 68 (2019), 643-661.
doi: 10.1016/j.apm.2018.11.052. |
[19] |
P. Hansen and D. Leary,
The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503.
doi: 10.1137/0914086. |
[20] |
B. Horn,
Determining lightness from an image, Computer Graphics Image Processing, 3 (1974), 277-299.
doi: 10.1016/0146-664X(74)90022-7. |
[21] |
B. Horn,
Understanding image intensities, Artificial Intelligence, 8 (1977), 201-231.
doi: 10.1016/0004-3702(77)90020-0. |
[22] |
D. Jobson, Z. Rahman and G. Woodell,
Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6 (1997), 451-462.
doi: 10.1109/83.557356. |
[23] |
D. Jobson, Z. Rahman and G. Woodell,
A multiscale Retinex for bridging the gap between color image and the human observation of scenes, IEEE Transactions on Image Processing, 6 (2002), 965-976.
doi: 10.1109/83.597272. |
[24] |
Y. Jung, T. Jeong and S. Yun,
Non-convex TV denoising corrupted by impulse noise, Inverse Problems and Imaging, 11 (2017), 689-702.
doi: 10.3934/ipi.2017032. |
[25] |
R. Kimmel, M. Elad, D. Shaked, R. Keshet and I. Sobel,
A variational framework for retinex, International Journal of Computer Vision, 52 (2003), 7-23.
|
[26] |
M. Lai, Y. Xu and W. Yin,
Improved iteratively reweighted least squares for unconstrained smoothed $\ell_q$ minimization, SIAM Journal on Numerical Analysis, 51 (2013), 927-957.
doi: 10.1137/110840364. |
[27] |
E. Land and J. Mccann,
Lightness and Retinex theory, Journal of the Optical Society of America, 61 (1971), 1-11.
|
[28] |
E. Land,
The Retinex theory of color vision, Scientific American, 237 (1977), 108-128.
|
[29] |
E. Land,
An alternative technique for the computation of the designator in the retinex theory of color vision, Proceedings of the National Academy of Sciences, 83 (1986), 3078-3080.
|
[30] |
M. Langer and S. Zucker,
Spatially varying illumination: A computational model of converging and diverging sources, European Conference on Computer Vision, 801 (1994), 226-232.
doi: 10.1007/BFb0028356. |
[31] |
A. Lanza1, S. Morigi1 and F. Sgallari,
Constrained $TV_p-\ell_2$ model for image restoration, Journal of Scientific Computing, 68 (2016), 64-91.
doi: 10.1007/s10915-015-0129-x. |
[32] |
L. Liu, Z. Pang and Y. Duan,
Retinex based on exponent-type total variation scheme, Inverse Problems and Imaging, 12 (2018), 1199-1217.
doi: 10.3934/ipi.2018050. |
[33] |
Z. Liu, C. Wu and Y. Zhao,
A new globally convergent algorithm for non-Lipschitz $\ell^p-\ell^q$ minimization, Advances in Computational Mathematics, 45 (2019), 1369-1399.
doi: 10.1007/s10444-019-09668-y. |
[34] |
J. Liang and X. Zhang,
Retinex by higher order total variation ${L}^1$ decomposition, Journal of Mathematical Imaging and Vision, 52 (2015), 345-355.
doi: 10.1007/s10851-015-0568-x. |
[35] |
Z. Lu,
Iterative reweighted minimization methods for $\ell^p$ regularized unconstrained nonlinear programming, Mathematical Programming: Series A and B, 147 (2014), 277-307.
doi: 10.1007/s10107-013-0722-4. |
[36] |
D. Marini and A. Rizzi,
A computational approach to color adaptation effects, Image and Vision Computing, 18 (2000), 1005-1014.
|
[37] |
W. Ma and S. Osher,
A TV bregman iterative model of retinex theory, Inverse Problems and Imaging, 6 (2012), 697-708.
doi: 10.3934/ipi.2012.6.697. |
[38] |
J. Mccann, Lessons learned from mondrians applied to real images and color gamuts, Proceedings of the IST/SID 7th Color Imaging Conference, 1999, 1–8. |
[39] |
J. Morel, A. Petro and C. Sbert, Fast implementation of color constancy algorithms, Proceedings of SPIE, 7241, 2009. |
[40] |
J. Morel, A. Petro and C. Sbert,
A PDE formalization of retinex theory, IEEE Transactions on Image Processing, 19 (2010), 2825-2837.
doi: 10.1109/TIP.2010.2049239. |
[41] |
V. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5280-1. |
[42] |
M. Ng and W. Wang,
A total variation model for retinex, SIAM Journal on Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588. |
[43] |
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock,
On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8 (2015), 331-372.
doi: 10.1137/140971518. |
[44] |
J. Oliveira, J. Dias and M. Figueiredo,
Adaptive total variation image deblurring: A majorizationCminimization approach, Signal Processing, 89 (2009), 1683-1693.
|
[45] |
H. Pan, Y. Wen and H. Zhu,
A regularization parameter selection model for total variation based image noise removal, Applied Mathematical Modelling, 68 (2019), 353-367.
doi: 10.1016/j.apm.2018.11.032. |
[46] |
E. Provenzi, D. Marini, L. De Carli and A. Rizzi,
Mathematical definition and analysis of the retinex algorithm, Journal of the Optical Society of America A, 22 (2005), 2613-2621.
doi: 10.1364/JOSAA.22.002613. |
[47] |
S. Sabacha and M. Teboulle,
Lagrangian methods for composite optimization, Handbook of Numerical Analysis, 20 (2019), 401-436.
|
[48] |
A. Theljani and K. Chen, A Nash game based variational model for joint image intensity correction and registration to deal with varying illumination, Inverse Problems, 36 (2020), 034002. |
[49] |
Y. Wen and R. Chan,
Using generalized cross validation to select regularization parameter for total variation regularization problems, Inverse Problems and Imaging, 12 (2018), 1103-1120.
doi: 10.3934/ipi.2018046. |
[50] |
W. Wang and C. He,
A variational model with barrier functionals for Retinex, SIAM Journal on Imaging Sciences, 8 (2015), 1955-1980.
doi: 10.1137/15M1006908. |
[51] |
J. Zhang, R. Chen, C. Deng and S. Wang,
Fast linearized augmented method for Euler's elastica model, Numerical Mathematics:Theory, Methods and Applications, 10 (2017), 98-115.
doi: 10.4208/nmtma.2017.m1611. |
[52] |
X. Zhang, Y. Shi, Z. Pang and Y. Zhu,
Fast algorithm for image denoising with different boundary conditions, Journal of the Franklin Institute, 354 (2017), 4595-4614.
doi: 10.1016/j.jfranklin.2017.04.011. |
[53] |
D. Zosso, G. Tran and S. Osher, A unifying retinex model based on non-local differential operators, Computational Imaging XI, 865702, 2013.. |
[54] |
W. Zuo, D. Meng, L. Zhang, X. Feng and D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, IEEE International Conference on Computer Vision, 2013,217–224. |















PSNR | MSSIM | ||
TVH1 | 30.9323 | 0.9812 | |
Shape1 | L0MS | 31.7962 | 0.9837 |
HOTVL | 18.9389 | 0.9374 | |
ETV | 36.2657 | 0.9967 | |
OUR | 36.8019 | 0.9973 | |
TVH1 | 31.5509 | 0.9514 | |
Shape2 | L0MS | 31.6024 | 0.9463 |
HoTVL1 | 15.6438 | 0.8137 | |
ETV | 36.6105 | 0.9972 | |
OUR | 37.6838 | 0.9975 |
PSNR | MSSIM | ||
TVH1 | 30.9323 | 0.9812 | |
Shape1 | L0MS | 31.7962 | 0.9837 |
HOTVL | 18.9389 | 0.9374 | |
ETV | 36.2657 | 0.9967 | |
OUR | 36.8019 | 0.9973 | |
TVH1 | 31.5509 | 0.9514 | |
Shape2 | L0MS | 31.6024 | 0.9463 |
HoTVL1 | 15.6438 | 0.8137 | |
ETV | 36.6105 | 0.9972 | |
OUR | 37.6838 | 0.9975 |
PSNR | MSSIM | PSNR | MSSIM | PSNR | MSSIM | PSNR | MSSIM | ||
TVH1 | 26.8509 | 0.9436 | 25.3513 | 0.9176 | 24.5925 | 0.8939 | 23.4850 | 0.8642 | |
Test | HoTVL1 | 30.2055 | 0.9515 | 27.7438 | 0.9288 | 26.4877 | 0.9069 | 24.7440 | 0.8774 |
Image1 | L0MS | 29.7718 | 0.9227 | 27.8711 | 0.9088 | 26.1986 | 0.8936 | 24.3809 | 0.8649 |
ETV | 32.6699 | 0.9904 | 31.1178 | 0.9844 | 29.1294 | 0.9767 | 28.4238 | 0.9686 | |
OUR | 33.0513 | 0.9909 | 31.2246 | 0.9846 | 30.1037 | 0.9781 | 28.4666 | 0.9686 | |
TVH1 | 27.4061 | 0.9230 | 26.5258 | 0.8935 | 25.5879 | 0.8661 | 24.0629 | 0.8348 | |
Test | HoTVL1 | 30.0791 | 0.9317 | 29.0495 | 0.9065 | 27.0113 | 0.8795 | 25.1211 | 0.8481 |
Image2 | L0MS | 32.0987 | 0.9246 | 29.0807 | 0.9016 | 27.1344 | 0.8760 | 24.9108 | 0.8382 |
ETV | 33.4363 | 0.9911 | 31.4108 | 0.9842 | 29.8199 | 0.9764 | 28.6496 | 0.9698 | |
OUR | 33.9694 | 0.9916 | 31.4609 | 0.9841 | 29.8766 | 0.9760 | 29.0947 | 0.9703 |
PSNR | MSSIM | PSNR | MSSIM | PSNR | MSSIM | PSNR | MSSIM | ||
TVH1 | 26.8509 | 0.9436 | 25.3513 | 0.9176 | 24.5925 | 0.8939 | 23.4850 | 0.8642 | |
Test | HoTVL1 | 30.2055 | 0.9515 | 27.7438 | 0.9288 | 26.4877 | 0.9069 | 24.7440 | 0.8774 |
Image1 | L0MS | 29.7718 | 0.9227 | 27.8711 | 0.9088 | 26.1986 | 0.8936 | 24.3809 | 0.8649 |
ETV | 32.6699 | 0.9904 | 31.1178 | 0.9844 | 29.1294 | 0.9767 | 28.4238 | 0.9686 | |
OUR | 33.0513 | 0.9909 | 31.2246 | 0.9846 | 30.1037 | 0.9781 | 28.4666 | 0.9686 | |
TVH1 | 27.4061 | 0.9230 | 26.5258 | 0.8935 | 25.5879 | 0.8661 | 24.0629 | 0.8348 | |
Test | HoTVL1 | 30.0791 | 0.9317 | 29.0495 | 0.9065 | 27.0113 | 0.8795 | 25.1211 | 0.8481 |
Image2 | L0MS | 32.0987 | 0.9246 | 29.0807 | 0.9016 | 27.1344 | 0.8760 | 24.9108 | 0.8382 |
ETV | 33.4363 | 0.9911 | 31.4108 | 0.9842 | 29.8199 | 0.9764 | 28.6496 | 0.9698 | |
OUR | 33.9694 | 0.9916 | 31.4609 | 0.9841 | 29.8766 | 0.9760 | 29.0947 | 0.9703 |
PSNR | MSSIM | ||
TVH1 | 31.7514 | 0.8887 | |
Checkboard | L0MS | 33.1312 | 0.9602 |
HOTVL1 | 29.5090 | 0.8725 | |
ETV | 38.7053 | 0.9936 | |
OUR | 39.2105 | 0.9934 | |
TVH1 | 30.7779 | 0.9799 | |
L0MS | 30.0935 | 0.9774 | |
Cube | HOTVL1 | 27.9950 | 0.9692 |
ETV | 29.6898 | 0.9866 | |
OUR | 33.3660 | 0.9896 |
PSNR | MSSIM | ||
TVH1 | 31.7514 | 0.8887 | |
Checkboard | L0MS | 33.1312 | 0.9602 |
HOTVL1 | 29.5090 | 0.8725 | |
ETV | 38.7053 | 0.9936 | |
OUR | 39.2105 | 0.9934 | |
TVH1 | 30.7779 | 0.9799 | |
L0MS | 30.0935 | 0.9774 | |
Cube | HOTVL1 | 27.9950 | 0.9692 |
ETV | 29.6898 | 0.9866 | |
OUR | 33.3660 | 0.9896 |
[1] |
Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems and Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447 |
[2] |
Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027 |
[3] |
Pengbo Geng, Wengu Chen. Unconstrained $ \ell_1 $-$ \ell_2 $ minimization for sparse recovery via mutual coherence. Mathematical Foundations of Computing, 2020, 3 (2) : 65-79. doi: 10.3934/mfc.2020006 |
[4] |
Huining Qiu, Xiaoming Chen, Wanquan Liu, Guanglu Zhou, Yiju Wang, Jianhuang Lai. A fast $\ell_1$-solver and its applications to robust face recognition. Journal of Industrial and Management Optimization, 2012, 8 (1) : 163-178. doi: 10.3934/jimo.2012.8.163 |
[5] |
Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925 |
[6] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[7] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[8] |
Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems and Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171 |
[9] |
Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems and Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058 |
[10] |
Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems and Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030 |
[11] |
Qia Li, Na Zhang. Capped $\ell_p$ approximations for the composite $\ell_0$ regularization problem. Inverse Problems and Imaging, 2018, 12 (5) : 1219-1243. doi: 10.3934/ipi.2018051 |
[12] |
Zhenwei Zhang, Xue Li, Yuping Duan, Ke Yin, Xue-Cheng Tai. An efficient multi-grid method for TV minimization problems. Inverse Problems and Imaging, 2021, 15 (5) : 1199-1221. doi: 10.3934/ipi.2021034 |
[13] |
Ryan Compton, Stanley Osher, Louis-S. Bouchard. Hybrid regularization for MRI reconstruction with static field inhomogeneity correction. Inverse Problems and Imaging, 2013, 7 (4) : 1215-1233. doi: 10.3934/ipi.2013.7.1215 |
[14] |
Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53 |
[15] |
Jorge Garcia Villeda. A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $. Electronic Research Archive, 2021, 29 (6) : 3853-3865. doi: 10.3934/era.2021065 |
[16] |
Wenye Ma, Stanley Osher. A TV Bregman iterative model of Retinex theory. Inverse Problems and Imaging, 2012, 6 (4) : 697-708. doi: 10.3934/ipi.2012.6.697 |
[17] |
Liang Ding, Weimin Han. Morozov's discrepancy principle for $ \alpha\ell_1-\beta\ell_2 $ sparsity regularization. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022035 |
[18] |
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 |
[19] |
C.M. Elliott, S. A. Smitheman. Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing animage into cartoon plus texture. Communications on Pure and Applied Analysis, 2007, 6 (4) : 917-936. doi: 10.3934/cpaa.2007.6.917 |
[20] |
Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems and Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]