[1]
|
R. Amestoy, E. Provenzi, M. Bertalmío and V. Caselles, A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (2009), 458-474.
|
[2]
|
M. Benning, F. Knoll, C. Schonlieb and T. Valkonen, Preconditioned ADMM with nonlinear operator constraint, IFIP Conference on System Modeling and Optimization, 494 (2015), 117-126.
doi: 10.1007/978-3-319-55795-3_10.
|
[3]
|
M. Bertalmío, V. Caselles, E. Provenzi and A. Rizzi, Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16 (2007), 1058-1072.
doi: 10.1109/TIP.2007.891777.
|
[4]
|
M. Bertalmío, V. Caselles and E. Provenzi, Issues about retinex theory and contrast enhancement, International Journal of Computer Vision, 83 (2009), 101-119.
|
[5]
|
A. Blake, Boundary conditions for lightness computation in Mondrian world, Computer Vision Graphics Image Processing, 32 (1985), 314-327.
doi: 10.1016/0734-189X(85)90054-4.
|
[6]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/9781601984616.
|
[7]
|
E. Candes, M. Wakin and S. Boyd, Enhancing sparsity by reweighted $l_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x.
|
[8]
|
T. Cooper and F. Baqai, Analysis and extensions of the frankle-mccann retinex algorithm, Journal of Electronic Imaging, 13 (2004), 85-93.
doi: 10.1117/1.1636182.
|
[9]
|
X. Chen, F. Xu and Y. Ye, Lower bound theory of nonzero entries in solutions of $\ell^2-\ell^p$ minimization, SIAM Journal on Scientific Computing, 32 (2010), 2832-2852.
doi: 10.1137/090761471.
|
[10]
|
X. Chen and W. Zhou, Convergence of the reweighted $\ell_1$ minimization algorithm for $\ell_2-\ell^p$ minimization, Journal Computational Optimization and Application, 59 (2014), 47-61.
doi: 10.1007/s10589-013-9553-8.
|
[11]
|
J. Douglas and H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4.
|
[12]
|
Y. Duan, H. Chang, W. Huang, J. Zhou, Z. Lu and C. Wu, The $L_0$ regularized Mumford-Shah model for bias correction and segmentation of medical images, IEEE Transactions on Image Processing, 24 (2015), 3927-3938.
doi: 10.1109/TIP.2015.2451957.
|
[13]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[14]
|
N. Galatsanos and A. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, 1 (1992), 322-336.
doi: 10.1109/83.148606.
|
[15]
|
D. Ghilli and K. Kunisch, On monotone and primal-dual active set schemes for $\ell^p$-type problems, $p\in(0, 1]$, Computational Optimizationand Applications, 72 (2019), 45-85.
doi: 10.1007/s10589-018-0036-9.
|
[16]
|
R. Glowinski, S. Luo and X. Tai, Fast operator-splitting algorithms for variational imaging models: Some recent developments, Handbook of Numerical Analysis, 20 (2019), 191-232.
|
[17]
|
R. Glowinski, S. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, Cham, 2016.
doi: 10.1007/978-3-319-41589-5.
|
[18]
|
Z. Gu, F. Li and X. Lv, A detail preserving variational model for image Retinex, Applied Mathematical Modelling, 68 (2019), 643-661.
doi: 10.1016/j.apm.2018.11.052.
|
[19]
|
P. Hansen and D. Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503.
doi: 10.1137/0914086.
|
[20]
|
B. Horn, Determining lightness from an image, Computer Graphics Image Processing, 3 (1974), 277-299.
doi: 10.1016/0146-664X(74)90022-7.
|
[21]
|
B. Horn, Understanding image intensities, Artificial Intelligence, 8 (1977), 201-231.
doi: 10.1016/0004-3702(77)90020-0.
|
[22]
|
D. Jobson, Z. Rahman and G. Woodell, Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6 (1997), 451-462.
doi: 10.1109/83.557356.
|
[23]
|
D. Jobson, Z. Rahman and G. Woodell, A multiscale Retinex for bridging the gap between color image and the human observation of scenes, IEEE Transactions on Image Processing, 6 (2002), 965-976.
doi: 10.1109/83.597272.
|
[24]
|
Y. Jung, T. Jeong and S. Yun, Non-convex TV denoising corrupted by impulse noise, Inverse Problems and Imaging, 11 (2017), 689-702.
doi: 10.3934/ipi.2017032.
|
[25]
|
R. Kimmel, M. Elad, D. Shaked, R. Keshet and I. Sobel, A variational framework for retinex, International Journal of Computer Vision, 52 (2003), 7-23.
|
[26]
|
M. Lai, Y. Xu and W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed $\ell_q$ minimization, SIAM Journal on Numerical Analysis, 51 (2013), 927-957.
doi: 10.1137/110840364.
|
[27]
|
E. Land and J. Mccann, Lightness and Retinex theory, Journal of the Optical Society of America, 61 (1971), 1-11.
|
[28]
|
E. Land, The Retinex theory of color vision, Scientific American, 237 (1977), 108-128.
|
[29]
|
E. Land, An alternative technique for the computation of the designator in the retinex theory of color vision, Proceedings of the National Academy of Sciences, 83 (1986), 3078-3080.
|
[30]
|
M. Langer and S. Zucker, Spatially varying illumination: A computational model of converging and diverging sources, European Conference on Computer Vision, 801 (1994), 226-232.
doi: 10.1007/BFb0028356.
|
[31]
|
A. Lanza1, S. Morigi1 and F. Sgallari, Constrained $TV_p-\ell_2$ model for image restoration, Journal of Scientific Computing, 68 (2016), 64-91.
doi: 10.1007/s10915-015-0129-x.
|
[32]
|
L. Liu, Z. Pang and Y. Duan, Retinex based on exponent-type total variation scheme, Inverse Problems and Imaging, 12 (2018), 1199-1217.
doi: 10.3934/ipi.2018050.
|
[33]
|
Z. Liu, C. Wu and Y. Zhao, A new globally convergent algorithm for non-Lipschitz $\ell^p-\ell^q$ minimization, Advances in Computational Mathematics, 45 (2019), 1369-1399.
doi: 10.1007/s10444-019-09668-y.
|
[34]
|
J. Liang and X. Zhang, Retinex by higher order total variation ${L}^1$ decomposition, Journal of Mathematical Imaging and Vision, 52 (2015), 345-355.
doi: 10.1007/s10851-015-0568-x.
|
[35]
|
Z. Lu, Iterative reweighted minimization methods for $\ell^p$ regularized unconstrained nonlinear programming, Mathematical Programming: Series A and B, 147 (2014), 277-307.
doi: 10.1007/s10107-013-0722-4.
|
[36]
|
D. Marini and A. Rizzi, A computational approach to color adaptation effects, Image and Vision Computing, 18 (2000), 1005-1014.
|
[37]
|
W. Ma and S. Osher, A TV bregman iterative model of retinex theory, Inverse Problems and Imaging, 6 (2012), 697-708.
doi: 10.3934/ipi.2012.6.697.
|
[38]
|
J. Mccann, Lessons learned from mondrians applied to real images and color gamuts, Proceedings of the IST/SID 7th Color Imaging Conference, 1999, 1–8.
|
[39]
|
J. Morel, A. Petro and C. Sbert, Fast implementation of color constancy algorithms, Proceedings of SPIE, 7241, 2009.
|
[40]
|
J. Morel, A. Petro and C. Sbert, A PDE formalization of retinex theory, IEEE Transactions on Image Processing, 19 (2010), 2825-2837.
doi: 10.1109/TIP.2010.2049239.
|
[41]
|
V. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5280-1.
|
[42]
|
M. Ng and W. Wang, A total variation model for retinex, SIAM Journal on Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588.
|
[43]
|
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8 (2015), 331-372.
doi: 10.1137/140971518.
|
[44]
|
J. Oliveira, J. Dias and M. Figueiredo, Adaptive total variation image deblurring: A majorizationCminimization approach, Signal Processing, 89 (2009), 1683-1693.
|
[45]
|
H. Pan, Y. Wen and H. Zhu, A regularization parameter selection model for total variation based image noise removal, Applied Mathematical Modelling, 68 (2019), 353-367.
doi: 10.1016/j.apm.2018.11.032.
|
[46]
|
E. Provenzi, D. Marini, L. De Carli and A. Rizzi, Mathematical definition and analysis of the retinex algorithm, Journal of the Optical Society of America A, 22 (2005), 2613-2621.
doi: 10.1364/JOSAA.22.002613.
|
[47]
|
S. Sabacha and M. Teboulle, Lagrangian methods for composite optimization, Handbook of Numerical Analysis, 20 (2019), 401-436.
|
[48]
|
A. Theljani and K. Chen, A Nash game based variational model for joint image intensity correction and registration to deal with varying illumination, Inverse Problems, 36 (2020), 034002.
|
[49]
|
Y. Wen and R. Chan, Using generalized cross validation to select regularization parameter for total variation regularization problems, Inverse Problems and Imaging, 12 (2018), 1103-1120.
doi: 10.3934/ipi.2018046.
|
[50]
|
W. Wang and C. He, A variational model with barrier functionals for Retinex, SIAM Journal on Imaging Sciences, 8 (2015), 1955-1980.
doi: 10.1137/15M1006908.
|
[51]
|
J. Zhang, R. Chen, C. Deng and S. Wang, Fast linearized augmented method for Euler's elastica model, Numerical Mathematics:Theory, Methods and Applications, 10 (2017), 98-115.
doi: 10.4208/nmtma.2017.m1611.
|
[52]
|
X. Zhang, Y. Shi, Z. Pang and Y. Zhu, Fast algorithm for image denoising with different boundary conditions, Journal of the Franklin Institute, 354 (2017), 4595-4614.
doi: 10.1016/j.jfranklin.2017.04.011.
|
[53]
|
D. Zosso, G. Tran and S. Osher, A unifying retinex model based on non-local differential operators, Computational Imaging XI, 865702, 2013..
|
[54]
|
W. Zuo, D. Meng, L. Zhang, X. Feng and D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, IEEE International Conference on Computer Vision, 2013,217–224.
|