\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation

  • * Corresponding author

    * Corresponding author
Abstract / Introduction Full Text(HTML) Figure(16) / Table(2) Related Papers Cited by
  • In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements we use are the statistical moments of the realizations of single point observation $ u(x_0,t,\omega). $ We build a representation of the solution $ u $ in the integral sense, then prove some theoretical results like uniqueness and stability. After that, we establish a numerical algorithm to solve the unknowns, where a mollification method is used.

    Mathematics Subject Classification: 35R11, 35R30, 65C30, 65M32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Experiment $ (e1) $, $ \hat E $ (top) and $ g_1, \hat g_1 $ (bottom) for different amount of samples

    Figure 2.  Experiment $ (e1), $ $ \hat E,J_\epsilon * \hat E $ (top) and $ g_1, \hat g_1 $ (bottom) for different $ \epsilon $, $ 10^3 $ realizations

    Figure 3.  Experiment $ (e1) $, $ \hat V $ (top) and $ |g_2|,|\hat g_2| $ (bottom) for different amount of samples

    Figure 4.  Experiment $ (e1) $, $ \hat V, J_\epsilon *\hat V $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \epsilon $, $ 10^3 $ realizations

    Figure 11.  Experiment $ (e1) $, $ er(g_1) $ and $ er(|g_2|) $ under different $ \epsilon $

    Figure 5.  Experiment $ (e1) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \epsilon $

    Figure 6.  Experiment $ (e1) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \sigma $

    Figure 7.  Experiment $ (e2) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \sigma $

    Figure 8.  Experiment $ (e3) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \sigma $

    Figure 9.  Experiment $ (e4) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \sigma $

    Figure 10.  Experiment $ (e5) $, $ g_1, \hat g_1 $ (top) and $ |g_2|, |\hat g_2| $ (bottom) for different $ \sigma $

    Figure 12.  Experiment $ (e1) $, $ er(g_1) $ (left) and $ er(|g_2|) $ (right) for different $ \sigma $

    Figure 13.  Experiment $ (e2) $, $ er(g_1) $ (left) and $ er(|g_2|) $ (right) for different $ \sigma $

    Figure 14.  Experiment $ (e3) $, $ er(g_1) $ (left) and $ er(|g_2|) $ (right) for different $ \sigma $

    Figure 15.  Experiment $ (e4) $, $ er(g_1) $ (left) and $ er(|g_2|) $ (right) for different $ \sigma $

    Figure 16.  Experiment $ (e5) $, $ er(g_1) $ (left) and $ er(|g_2|) $ (right) for different $ \sigma $

    Table 1.  Errors without mollification

    $ 10^3 $ samples $ 10^4 $ samples $ 10^5 $ samples
    $ er(g_1) $ $ er(|g_2|) $ $ er(g_1) $ $ er(|g_2|) $ $ er(g_1) $ $ er(|g_2|) $
    $ (e1) $ 0.299794 0.056932 0.091171 0.018218 0.028705 0.009218
    $ (e2) $ 0.449422 0.084018 0.142783 0.029317 0.046238 0.012576
    $ (e3) $ 0.447672 0.083309 0.231421 0.043802 0.081429 0.020119
    $ (e4) $ 1.570322 0.288016 0.503009 0.104327 0.151976 0.055286
    $ (e5) $ 1.542568 0.310195 0.509957 0.115601 0.171542 0.057249
     | Show Table
    DownLoad: CSV

    Table 2.  Errors for different $ \epsilon $, $ 10^3 $ realizations used

    Without mollification $ \epsilon=0.005 $ $ \epsilon=0.05 $
    $ er(g_1) $ $ er(|g_2|) $ $ er(g_1) $ $ er(|g_2|) $ $ er(g_1) $ $ er(|g_2|) $
    $ (e1) $ 0.299794 0.056932 0.124498 0.030254 0.050135 0.055231
    $ (e2) $ 0.449422 0.084018 0.203604 0.039741 0.097088 0.034309
    $ (e3) $ 0.447672 0.083309 0.216069 0.041439 0.096336 0.033850
    $ (e4) $ 1.570322 0.288016 0.827782 0.172930 0.266984 0.262352
    $ (e5) $ 1.542568 0.310195 0.624018 0.195870 0.165958 0.281415
     | Show Table
    DownLoad: CSV
  • [1] R. A. Adams and J. J. Fournier, Sobolev Spaces, 140, Elsevier, 2003.
    [2] A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusion-convection problem, Numer. Methods Partial Differential Equations, 35 (2019), 976-992.  doi: 10.1002/num.22334.
    [3] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201-210.  doi: 10.1122/1.549724.
    [4] D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications, De Gruyter, 2019.
    [5] G. BaoC. Chen and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertain. Quantif., 4 (2016), 1263-1287.  doi: 10.1137/16M1067470.
    [6] G. BaoS.-N. ChowP. Li and H. Zhou, An inverse random source problem for the Helmholtz equation, Math. Comp., 83 (2014), 215-233.  doi: 10.1090/S0025-5718-2013-02730-5.
    [7] G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006. doi: 10.1088/0266-5611/29/1/015006.
    [8] E. BarkaiR. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.  doi: 10.1103/PhysRevE.61.132.
    [9] B. Berkowitz, A. Cortis, M. Dentz and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44. doi: 10.1029/2005RG000178.
    [10] H. Brunner, Volterra Integral Equations, Cambridge Monographs on Applied and Computational Mathematics, 30, Cambridge University Press, Cambridge, 2017 doi: 10.1017/9781316162491.
    [11] X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.
    [12] X. Cao and H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861-1876.  doi: 10.4310/CMS.2019.v17.n7.a5.
    [13] M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 91. doi: 10.1007/s00526-020-01740-6.
    [14] X. ChengL. Yuan and K. Liang, Inverse source problem for a distributed-order time fractional diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 17-32.  doi: 10.1515/jiip-2019-0006.
    [15] B. De Finetti, Theory of Probability: A Critical Introductory Treatment, 6, John Wiley & Sons, 2017. doi: 10.1002/9781119286387.
    [16] X. Feng, P. Li and X. Wang, An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion, Inverse Problems, 36 (2020), 045008. doi: 10.1088/1361-6420/ab6503.
    [17] T. Ghosh, A. Rúland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 108505. doi: 10.1016/j.jfa.2020.108505.
    [18] T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.
    [19] R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance. Ⅲ. The diffusion limit, in Mathematical Finance (Konstanz, 2000), Trends Math., Birkh¨auser, Basel, 2001, 171-180.
    [20] B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation Ⅱ. General potentials and stability, SIAM J. Math. Anal., 52 (2020), 402-436.  doi: 10.1137/19M1251576.
    [21] D. HouM. T. Hasan and C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math., 18 (2018), 43-62.  doi: 10.1515/cmam-2017-0027.
    [22] X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Problems, 35 (2019), 045003. doi: 10.1088/1361-6420/ab0138.
    [23] B. JinR. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), 197-221.  doi: 10.1093/imanum/dru063.
    [24] B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse Problems, 31 (2015), 035003. doi: 10.1088/0266-5611/31/3/035003.
    [25] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation, Inverse Problems, 35 (2019), 065004. doi: 10.1088/1361-6420/ab109e.
    [26] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.
    [27] J. Klafter and R. Silbey, Derivation of the continuous-time random-walk equation, Phys. Rev. Lett., 44 (1980), 55-58.  doi: 10.1103/PhysRevLett.44.55.
    [28] R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, Trans. ASME J. Appl. Mech., 51 (1984), 299-307.  doi: 10.1115/1.3167616.
    [29] R.-Y. Lai and Y.-H. Lin, Global uniqueness for the fractional semilinear Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 1189-1199.  doi: 10.1090/proc/14319.
    [30] M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2018), 015003. doi: 10.1088/1361-6420/aa99d2.
    [31] P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004. doi: 10.1088/0266-5611/27/3/035004.
    [32] P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.  doi: 10.1016/j.jmaa.2017.01.074.
    [33] Z. Li, X. Cheng and G. Li, An inverse problem in time-fractional diffusion equations with nonlinear boundary condition, J. Math. Phys., 60 (2019), 091502. doi: 10.1063/1.5047074.
    [34] Z. LiY. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73 (2017), 1041-1052.  doi: 10.1016/j.camwa.2016.06.030.
    [35] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ, Springer-Verlag, New York-Heidelberg, 1972.
    [36] Y. Liu and Z. Zhang, Reconstruction of the temporal component in the source term of a (time-fractional) diffusion equation, J. Phys. A, 50 (2017), 305203. doi: 10.1088/1751-8121/aa763a.
    [37] Z. LiuF. Liu and F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139-151.  doi: 10.1016/j.apnum.2018.10.005.
    [38] Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223.  doi: 10.1016/j.jmaa.2008.10.018.
    [39] C. LvM. Azaiez and C. Xu, Spectral deferred correction methods for fractional differential equations, Numer. Math. Theory Methods Appl., 11 (2018), 729-751.  doi: 10.4208/nmtma.2018.s03.
    [40] C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2724. doi: 10.1137/15M102664X.
    [41] M. Magdziarz, A. Weron, K. Burnecki and J. Klafter, Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics, Phys. Rev. Lett., 103 (2009), 180602. doi: 10.1103/PhysRevLett.103.180602.
    [42] D. MurioC. E. Mejía and S. Zhan, Discrete mollification and automatic numerical differentiation, Comput. Math. Appl., 35 (1998), 1-16.  doi: 10.1016/S0898-1221(98)00001-7.
    [43] R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (B), 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.
    [44] P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002. doi: 10.1088/1361-6420/ab532c.
    [45] B. Øksendal, Stochastic Differential Equations, 6$^th$ edition, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.
    [46] I. PodlubnyFractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999. 
    [47] S. QasemiD. Rostamy and N. Abdollahi, The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method, BIT, 59 (2019), 183-212.  doi: 10.1007/s10543-018-0731-z.
    [48] Z. RuanS. Zhang and S. Xiong, Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method, Evol. Equ. Control Theory, 7 (2018), 669-682.  doi: 10.3934/eect.2018032.
    [49] A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003. doi: 10.1088/1361-6420/aaac5a.
    [50] W. Rundell and Z. Zhang, Fractional diffusion: Recovering the distributed fractional derivative from overposed data, Inverse Problems, 33 (2017), 035008. doi: 10.1088/1361-6420/aa573e.
    [51] W. Rundell and Z. Zhang, Recovering an unknown source in a fractional diffusion problem, J. Comput. Phys., 368 (2018), 299-314.  doi: 10.1016/j.jcp.2018.04.046.
    [52] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.
    [53] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
    [54] S. ShenF. Liu and V. V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math., 345 (2019), 515-534.  doi: 10.1016/j.cam.2018.05.020.
    [55] T. N. ThachT. N. HuyP. T. M. TamM. N. Minh and N. H. Can, Identification of an inverse source problem for time-fractional diffusion equation with random noise, Math. Methods Appl. Sci., 42 (2019), 204-218.  doi: 10.1002/mma.5334.
    [56] F. G. Tricomi, Integral Equations, Dover Publications, Inc., New York, 1985.
    [57] N. H. Tuan, V. C. H. Luu and S. Tatar, An inverse problem for an inhomogeneous time-fractional diffusion equation: A regularization method and error estimate, Comput. Appl. Math., 38 (2019), Art. 32. doi: 10.1007/s40314-019-0776-x.
    [58] X. B. Yan and T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, J. Inverse Ill-Posed Probl., 27 (2019), 1-16.  doi: 10.1515/jiip-2017-0091.
    [59] F. Zeng, C. Li, F. Liu and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976–A3000. doi: 10.1137/130910865.
    [60] Z. Zhang, An undetermined time-dependent coefficient in a fractional diffusion equation, Inverse Probl. Imaging, 11 (2017), 875-900.  doi: 10.3934/ipi.2017041.
    [61] Z. Zhang and Z. Zhou, Recovering the potential term in a fractional diffusion equation, IMA J. Appl. Math., 82 (2017), 579-600.  doi: 10.1093/imamat/hxx004.
  • 加载中

Figures(16)

Tables(2)

SHARE

Article Metrics

HTML views(3269) PDF downloads(377) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return