[1]
|
R. A. Adams and J. J. Fournier, Sobolev Spaces, 140, Elsevier, 2003.
|
[2]
|
A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusion-convection problem, Numer. Methods Partial Differential Equations, 35 (2019), 976-992.
doi: 10.1002/num.22334.
|
[3]
|
R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201-210.
doi: 10.1122/1.549724.
|
[4]
|
D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications, De Gruyter, 2019.
|
[5]
|
G. Bao, C. Chen and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertain. Quantif., 4 (2016), 1263-1287.
doi: 10.1137/16M1067470.
|
[6]
|
G. Bao, S.-N. Chow, P. Li and H. Zhou, An inverse random source problem for the Helmholtz equation, Math. Comp., 83 (2014), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5.
|
[7]
|
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006.
doi: 10.1088/0266-5611/29/1/015006.
|
[8]
|
E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
doi: 10.1103/PhysRevE.61.132.
|
[9]
|
B. Berkowitz, A. Cortis, M. Dentz and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44.
doi: 10.1029/2005RG000178.
|
[10]
|
H. Brunner, Volterra Integral Equations, Cambridge Monographs on Applied and Computational Mathematics, 30, Cambridge University Press, Cambridge, 2017
doi: 10.1017/9781316162491.
|
[11]
|
X. Cao, Y.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.
doi: 10.3934/ipi.2019011.
|
[12]
|
X. Cao and H. Liu, Determining a fractional Helmholtz equation with unknown source and scattering potential, Commun. Math. Sci., 17 (2019), 1861-1876.
doi: 10.4310/CMS.2019.v17.n7.a5.
|
[13]
|
M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 91.
doi: 10.1007/s00526-020-01740-6.
|
[14]
|
X. Cheng, L. Yuan and K. Liang, Inverse source problem for a distributed-order time fractional diffusion equation, J. Inverse Ill-Posed Probl., 28 (2020), 17-32.
doi: 10.1515/jiip-2019-0006.
|
[15]
|
B. De Finetti, Theory of Probability: A Critical Introductory Treatment, 6, John Wiley & Sons, 2017.
doi: 10.1002/9781119286387.
|
[16]
|
X. Feng, P. Li and X. Wang, An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion, Inverse Problems, 36 (2020), 045008.
doi: 10.1088/1361-6420/ab6503.
|
[17]
|
T. Ghosh, A. Rúland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 108505.
doi: 10.1016/j.jfa.2020.108505.
|
[18]
|
T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.
doi: 10.2140/apde.2020.13.455.
|
[19]
|
R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance. Ⅲ. The diffusion limit, in Mathematical Finance (Konstanz, 2000), Trends Math., Birkh¨auser, Basel, 2001, 171-180.
|
[20]
|
B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation Ⅱ. General potentials and stability, SIAM J. Math. Anal., 52 (2020), 402-436.
doi: 10.1137/19M1251576.
|
[21]
|
D. Hou, M. T. Hasan and C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math., 18 (2018), 43-62.
doi: 10.1515/cmam-2017-0027.
|
[22]
|
X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Problems, 35 (2019), 045003.
doi: 10.1088/1361-6420/ab0138.
|
[23]
|
B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), 197-221.
doi: 10.1093/imanum/dru063.
|
[24]
|
B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion processes, Inverse Problems, 31 (2015), 035003.
doi: 10.1088/0266-5611/31/3/035003.
|
[25]
|
B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation, Inverse Problems, 35 (2019), 065004.
doi: 10.1088/1361-6420/ab109e.
|
[26]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006.
|
[27]
|
J. Klafter and R. Silbey, Derivation of the continuous-time random-walk equation, Phys. Rev. Lett., 44 (1980), 55-58.
doi: 10.1103/PhysRevLett.44.55.
|
[28]
|
R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, Trans. ASME J. Appl. Mech., 51 (1984), 299-307.
doi: 10.1115/1.3167616.
|
[29]
|
R.-Y. Lai and Y.-H. Lin, Global uniqueness for the fractional semilinear Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 1189-1199.
doi: 10.1090/proc/14319.
|
[30]
|
M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2018), 015003.
doi: 10.1088/1361-6420/aa99d2.
|
[31]
|
P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004.
doi: 10.1088/0266-5611/27/3/035004.
|
[32]
|
P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.
doi: 10.1016/j.jmaa.2017.01.074.
|
[33]
|
Z. Li, X. Cheng and G. Li, An inverse problem in time-fractional diffusion equations with nonlinear boundary condition, J. Math. Phys., 60 (2019), 091502.
doi: 10.1063/1.5047074.
|
[34]
|
Z. Li, Y. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 73 (2017), 1041-1052.
doi: 10.1016/j.camwa.2016.06.030.
|
[35]
|
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ, Springer-Verlag, New York-Heidelberg, 1972.
|
[36]
|
Y. Liu and Z. Zhang, Reconstruction of the temporal component in the source term of a (time-fractional) diffusion equation, J. Phys. A, 50 (2017), 305203.
doi: 10.1088/1751-8121/aa763a.
|
[37]
|
Z. Liu, F. Liu and F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139-151.
doi: 10.1016/j.apnum.2018.10.005.
|
[38]
|
Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218-223.
doi: 10.1016/j.jmaa.2008.10.018.
|
[39]
|
C. Lv, M. Azaiez and C. Xu, Spectral deferred correction methods for fractional differential equations, Numer. Math. Theory Methods Appl., 11 (2018), 729-751.
doi: 10.4208/nmtma.2018.s03.
|
[40]
|
C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2724.
doi: 10.1137/15M102664X.
|
[41]
|
M. Magdziarz, A. Weron, K. Burnecki and J. Klafter, Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics, Phys. Rev. Lett., 103 (2009), 180602.
doi: 10.1103/PhysRevLett.103.180602.
|
[42]
|
D. Murio, C. E. Mejía and S. Zhan, Discrete mollification and automatic numerical differentiation, Comput. Math. Appl., 35 (1998), 1-16.
doi: 10.1016/S0898-1221(98)00001-7.
|
[43]
|
R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (B), 133 (1986), 425-430.
doi: 10.1002/pssb.2221330150.
|
[44]
|
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002.
doi: 10.1088/1361-6420/ab532c.
|
[45]
|
B. Øksendal, Stochastic Differential Equations, 6$^th$ edition, Universitext, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6.
|
[46]
|
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
|
[47]
|
S. Qasemi, D. Rostamy and N. Abdollahi, The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method, BIT, 59 (2019), 183-212.
doi: 10.1007/s10543-018-0731-z.
|
[48]
|
Z. Ruan, S. Zhang and S. Xiong, Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method, Evol. Equ. Control Theory, 7 (2018), 669-682.
doi: 10.3934/eect.2018032.
|
[49]
|
A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003.
doi: 10.1088/1361-6420/aaac5a.
|
[50]
|
W. Rundell and Z. Zhang, Fractional diffusion: Recovering the distributed fractional derivative from overposed data, Inverse Problems, 33 (2017), 035008.
doi: 10.1088/1361-6420/aa573e.
|
[51]
|
W. Rundell and Z. Zhang, Recovering an unknown source in a fractional diffusion problem, J. Comput. Phys., 368 (2018), 299-314.
doi: 10.1016/j.jcp.2018.04.046.
|
[52]
|
K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.
doi: 10.1016/j.jmaa.2011.04.058.
|
[53]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
|
[54]
|
S. Shen, F. Liu and V. V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math., 345 (2019), 515-534.
doi: 10.1016/j.cam.2018.05.020.
|
[55]
|
T. N. Thach, T. N. Huy, P. T. M. Tam, M. N. Minh and N. H. Can, Identification of an inverse source problem for time-fractional diffusion equation with random noise, Math. Methods Appl. Sci., 42 (2019), 204-218.
doi: 10.1002/mma.5334.
|
[56]
|
F. G. Tricomi, Integral Equations, Dover Publications, Inc., New York, 1985.
|
[57]
|
N. H. Tuan, V. C. H. Luu and S. Tatar, An inverse problem for an inhomogeneous time-fractional diffusion equation: A regularization method and error estimate, Comput. Appl. Math., 38 (2019), Art. 32.
doi: 10.1007/s40314-019-0776-x.
|
[58]
|
X. B. Yan and T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, J. Inverse Ill-Posed Probl., 27 (2019), 1-16.
doi: 10.1515/jiip-2017-0091.
|
[59]
|
F. Zeng, C. Li, F. Liu and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976–A3000.
doi: 10.1137/130910865.
|
[60]
|
Z. Zhang, An undetermined time-dependent coefficient in a fractional diffusion equation, Inverse Probl. Imaging, 11 (2017), 875-900.
doi: 10.3934/ipi.2017041.
|
[61]
|
Z. Zhang and Z. Zhou, Recovering the potential term in a fractional diffusion equation, IMA J. Appl. Math., 82 (2017), 579-600.
doi: 10.1093/imamat/hxx004.
|