• Previous Article
    Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations
  • IPI Home
  • This Issue
  • Next Article
    Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles
December  2020, 14(6): 1057-1105. doi: 10.3934/ipi.2020055

Interactions of semilinear progressing waves in two or more space dimensions

Department of Mathematics, Purdue University, 150 North University Street, West Lafayette Indiana, 47907, USA

Received  January 2020 Revised  July 2020 Published  December 2020 Early access  August 2020

Fund Project: The author is supported by the Simons Foundation grant #349507, Antônio Sá Barreto

We analyze the behavior of the singularities of solutions of semilinear wave equations after the interaction of three transversal conormal waves. Our results hold for space dimensions two and higher, and for arbitrary $ {{C}^{\infty }} $ nonlinearity. The case of two space dimensions in which the nonlinearity is a polynomial was studied by the author and Yiran Wang. We also indicate possible applications to inverse problems.

Citation: Antônio Sá Barreto. Interactions of semilinear progressing waves in two or more space dimensions. Inverse Problems and Imaging, 2020, 14 (6) : 1057-1105. doi: 10.3934/ipi.2020055
References:
[1]

M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math., 118 (1983), 187-214.  doi: 10.2307/2006959.

[2]

M. Beals, Vector fields associated with the nonlinear interaction of progressing waves, Indiana Univ. Math. J., 37 (1988), 637-666.  doi: 10.1512/iumj.1988.37.37031.

[3]

M. Beals, Singularities of conormal radially smooth solutions to nonlinear wave equations, Comm. in P. D. E., 13 (1988), 1355-1382.  doi: 10.1080/03605308808820579.

[4]

M. Beals, Propagation and interaction of singularities in nonlinear hyperbolic problems, Progress in Nonlinear Differential Equations and their Applications, 3, Birkhäuser Boston, Inc., Boston, MA, 1989. doi: 10.1007/978-1-4612-4554-4.

[5]

M. Beals, Regularity of nonlinear waves associated with a cusp, Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), IMA Vol. Math. Appl., 30, Springer, New York, 1991, 9–27. doi: 10.1007/978-1-4613-9136-4_2.

[6]

J.-M. Bony, Localization et propagation des singularités pour les équations nonlinéaires,, Journées des E.D.P., St. Jean-de-Monts, (1978).

[7]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux derivées partielles nonlinéaires, Ann. Sci. Ec. Norm. Sup., 14 (1981), 209-246.  doi: 10.24033/asens.1404.

[8]

J.-M. Bony, Interaction des singularités pour les équations aux dérivées partielles nonlinéaires, Sem. Goulaouic-Meyer-Schwartz Exp. 2, (1981/1982).

[9]

J.-M. Bony, Propagation et interaction des singularités pour les solutions des équations aux dérivées partielles non-linéaires, Proceedings of the International Congress of Mathematicians, 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, 1133–1147.

[10]

J-M. Bony, Interaction des singularités pour les équations de Klein-Gordon non linéaires, Goulaouic-Meyer-Schwartz Seminar, Exp. No. 10, École Polytech., Palaiseau, 1984, 28 pp.

[11]

J-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, 11–49.

[12]

J. Y. Chemin, Interaction de trois ondes dans les équations semi-linéaires strictement hyperboliques d'ordre 2, Communications in Partial Differential Equations, 12:11 (1987), 1203-1225.  doi: 10.1080/03605308708820525.

[13]

X. Chen, M. Lassas, L. Oksanen and G. Paternain, Detection of Hermitian connections in wave equations with cubic nonlinearity, preprint, arXiv: 1902.05711.

[14]

J-M. Delort, Conormalité des ondes semi-linéaires le long des caustiques, Amer. J. Math., 113 (1991), 593-651.  doi: 10.2307/2374842.

[15]

J. J. Duistermaat, Fourier integral operators, Series Progress in Mathematics, 130

[16]

A. Fiorenza, M. R. Formica, T. Roskovec and F. Soudský, Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks, preprint, arXiv: 1812.04281.

[17]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232.  doi: 10.1016/0022-1236(90)90011-9.

[18] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511721441.
[19]

L. Holt, Singularities produced in conormal wave interactions, Trans. Amer. Math. Soc., 347 (1995), 289-315.  doi: 10.1090/S0002-9947-1995-1264146-3.

[20]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume III, Springer Verlag, 1994.

[21]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume IV, Springer Verlag, 1994.

[22]

M. Joshi and A. Sá Barreto, The generation of semilinear singularities by a swallowtail caustic, Amer. J. Math., 120 (1998), 529-550.  doi: 10.1353/ajm.1998.0023.

[23]

Y. KurylevM. Lassas and G. Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Inventiones Mathematicae, 212.3 (2018), 781-857.  doi: 10.1007/s00222-017-0780-y.

[24]

G. Lebeau, Équations des ondes semi-linéaires. Ⅱ. Contrôle des singularités et caustiques nonlinéaires, Invent. Math., 95 (1989), 277-323.  doi: 10.1007/BF01393899.

[25]

M. LassasG. Uhlmann and Y. Wang, Inverse problems for semilinear wave equations on Lorentzian manifolds, Comm. Math. Phys., 360 (2018), 555-609.  doi: 10.1007/s00220-018-3135-7.

[26]

R. B. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 483-519.  doi: 10.1002/cpa.3160320403.

[27]

R. B. Melrose, Interaction of progressing waves through a nonlinear potential, Séminaire Équations aux Dérivées Partielles (Polytechnique), (1983-1984), Exp. No. 12, 1–13.

[28]

R. B. Melrose, Semilinear waves with cusp singularities, Journées "Équations aux derivées partielles" (Saint Jean de Monts, 1987), Exp. No. X, École Polytech., Palaiseau, 1987, 10 pp.

[29]

R. B. Melrose, Conormality, cusps and nonlinear interaction, Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), IMA Vol. Math. Appl., 30, Springer, New York, 1991,155–166. doi: 10.1007/978-1-4613-9136-4_11.

[30]

R. B. Melrose and N. Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. Math., 121 (1985), 187-213.  doi: 10.2307/1971196.

[31]

R. B. Melrose and N. Ritter, Interaction of progressing waves for semilinear wave equations.Ⅱ, Ark. Mat., 25 (1987), 91-114.  doi: 10.1007/BF02384437.

[32]

R. B. Melrose and A. Sá Barreto, Non-linear interaction of a cusp and a plane, Comm. Partial Differential Equations, 20 (1995), 961-1032.  doi: 10.1080/03605309508821121.

[33]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.  doi: 10.1090/S0002-9947-1965-0182927-5.

[34]

A. Piriou, Calcul symbolique non linéaire pour une onde conormale simple, Ann. Inst. Fourier (Grenoble), 38 (1988), 173-187.  doi: 10.5802/aif.1153.

[35]

J. Rauch and M. Reed, Singularities produced by the nonlinear interaction of three progressing waves; Examples, Comm. Partial Differential Equations, 7 (1982), 1117-1133.  doi: 10.1080/03605308208820246.

[36]

J. Rauch and M. Reed, Non-linear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J., 49 (1982), 379-475. 

[37]

J. Rauch and M. Reed, Classical conormal solutions of semilinear systems, Comm. Partial Differential Equations, 13 (1988), 1297-1335.  doi: 10.1080/03605308808820577.

[38]

A. Sá Barreto, Interactions of conormal waves for fully semilinear wave equations, J. Funct. Anal., 89 (1990), 233-273.  doi: 10.1016/0022-1236(90)90094-2.

[39]

A. Sá Barreto, Second microlocal ellipticity and propagation of conormality for semilinear wave equations, J. Funct. Anal., 102 (1991), 47-71.  doi: 10.1016/0022-1236(91)90135-R.

[40]

A. Sá Barreto, Evolution of semilinear waves with swallowtail singularities, Duke Math. J., 75 (1994), 645-710.  doi: 10.1215/S0012-7094-94-07520-0.

[41]

A. Sá Barreto, G. Uhlmann and Y. Wang, Inverse scattering for critical semilinear wave equations, preprint, arXiv: 2003.03822.

[42]

A. Sá Barreto and Y. Wang, Singularities generated by the triple interaction of semilinear conormal waves, preprint, arXiv: 1809.09253.

[43]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.  doi: 10.1090/S0002-9947-1958-0092943-6.

[44]

G. Uhlmann and Y. Wang, Determination of space-time structures from gravitational perturbations, Comm. Pure Appl. Math., 73 (2020), 1315-1367.  doi: 10.1002/cpa.21882.

show all references

References:
[1]

M. Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math., 118 (1983), 187-214.  doi: 10.2307/2006959.

[2]

M. Beals, Vector fields associated with the nonlinear interaction of progressing waves, Indiana Univ. Math. J., 37 (1988), 637-666.  doi: 10.1512/iumj.1988.37.37031.

[3]

M. Beals, Singularities of conormal radially smooth solutions to nonlinear wave equations, Comm. in P. D. E., 13 (1988), 1355-1382.  doi: 10.1080/03605308808820579.

[4]

M. Beals, Propagation and interaction of singularities in nonlinear hyperbolic problems, Progress in Nonlinear Differential Equations and their Applications, 3, Birkhäuser Boston, Inc., Boston, MA, 1989. doi: 10.1007/978-1-4612-4554-4.

[5]

M. Beals, Regularity of nonlinear waves associated with a cusp, Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), IMA Vol. Math. Appl., 30, Springer, New York, 1991, 9–27. doi: 10.1007/978-1-4613-9136-4_2.

[6]

J.-M. Bony, Localization et propagation des singularités pour les équations nonlinéaires,, Journées des E.D.P., St. Jean-de-Monts, (1978).

[7]

J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux derivées partielles nonlinéaires, Ann. Sci. Ec. Norm. Sup., 14 (1981), 209-246.  doi: 10.24033/asens.1404.

[8]

J.-M. Bony, Interaction des singularités pour les équations aux dérivées partielles nonlinéaires, Sem. Goulaouic-Meyer-Schwartz Exp. 2, (1981/1982).

[9]

J.-M. Bony, Propagation et interaction des singularités pour les solutions des équations aux dérivées partielles non-linéaires, Proceedings of the International Congress of Mathematicians, 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, 1133–1147.

[10]

J-M. Bony, Interaction des singularités pour les équations de Klein-Gordon non linéaires, Goulaouic-Meyer-Schwartz Seminar, Exp. No. 10, École Polytech., Palaiseau, 1984, 28 pp.

[11]

J-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, 11–49.

[12]

J. Y. Chemin, Interaction de trois ondes dans les équations semi-linéaires strictement hyperboliques d'ordre 2, Communications in Partial Differential Equations, 12:11 (1987), 1203-1225.  doi: 10.1080/03605308708820525.

[13]

X. Chen, M. Lassas, L. Oksanen and G. Paternain, Detection of Hermitian connections in wave equations with cubic nonlinearity, preprint, arXiv: 1902.05711.

[14]

J-M. Delort, Conormalité des ondes semi-linéaires le long des caustiques, Amer. J. Math., 113 (1991), 593-651.  doi: 10.2307/2374842.

[15]

J. J. Duistermaat, Fourier integral operators, Series Progress in Mathematics, 130

[16]

A. Fiorenza, M. R. Formica, T. Roskovec and F. Soudský, Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks, preprint, arXiv: 1812.04281.

[17]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232.  doi: 10.1016/0022-1236(90)90011-9.

[18] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators, Cambridge University Press, 1994.  doi: 10.1017/CBO9780511721441.
[19]

L. Holt, Singularities produced in conormal wave interactions, Trans. Amer. Math. Soc., 347 (1995), 289-315.  doi: 10.1090/S0002-9947-1995-1264146-3.

[20]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume III, Springer Verlag, 1994.

[21]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Volume IV, Springer Verlag, 1994.

[22]

M. Joshi and A. Sá Barreto, The generation of semilinear singularities by a swallowtail caustic, Amer. J. Math., 120 (1998), 529-550.  doi: 10.1353/ajm.1998.0023.

[23]

Y. KurylevM. Lassas and G. Uhlmann, Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations, Inventiones Mathematicae, 212.3 (2018), 781-857.  doi: 10.1007/s00222-017-0780-y.

[24]

G. Lebeau, Équations des ondes semi-linéaires. Ⅱ. Contrôle des singularités et caustiques nonlinéaires, Invent. Math., 95 (1989), 277-323.  doi: 10.1007/BF01393899.

[25]

M. LassasG. Uhlmann and Y. Wang, Inverse problems for semilinear wave equations on Lorentzian manifolds, Comm. Math. Phys., 360 (2018), 555-609.  doi: 10.1007/s00220-018-3135-7.

[26]

R. B. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 483-519.  doi: 10.1002/cpa.3160320403.

[27]

R. B. Melrose, Interaction of progressing waves through a nonlinear potential, Séminaire Équations aux Dérivées Partielles (Polytechnique), (1983-1984), Exp. No. 12, 1–13.

[28]

R. B. Melrose, Semilinear waves with cusp singularities, Journées "Équations aux derivées partielles" (Saint Jean de Monts, 1987), Exp. No. X, École Polytech., Palaiseau, 1987, 10 pp.

[29]

R. B. Melrose, Conormality, cusps and nonlinear interaction, Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), IMA Vol. Math. Appl., 30, Springer, New York, 1991,155–166. doi: 10.1007/978-1-4613-9136-4_11.

[30]

R. B. Melrose and N. Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Ann. Math., 121 (1985), 187-213.  doi: 10.2307/1971196.

[31]

R. B. Melrose and N. Ritter, Interaction of progressing waves for semilinear wave equations.Ⅱ, Ark. Mat., 25 (1987), 91-114.  doi: 10.1007/BF02384437.

[32]

R. B. Melrose and A. Sá Barreto, Non-linear interaction of a cusp and a plane, Comm. Partial Differential Equations, 20 (1995), 961-1032.  doi: 10.1080/03605309508821121.

[33]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.  doi: 10.1090/S0002-9947-1965-0182927-5.

[34]

A. Piriou, Calcul symbolique non linéaire pour une onde conormale simple, Ann. Inst. Fourier (Grenoble), 38 (1988), 173-187.  doi: 10.5802/aif.1153.

[35]

J. Rauch and M. Reed, Singularities produced by the nonlinear interaction of three progressing waves; Examples, Comm. Partial Differential Equations, 7 (1982), 1117-1133.  doi: 10.1080/03605308208820246.

[36]

J. Rauch and M. Reed, Non-linear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J., 49 (1982), 379-475. 

[37]

J. Rauch and M. Reed, Classical conormal solutions of semilinear systems, Comm. Partial Differential Equations, 13 (1988), 1297-1335.  doi: 10.1080/03605308808820577.

[38]

A. Sá Barreto, Interactions of conormal waves for fully semilinear wave equations, J. Funct. Anal., 89 (1990), 233-273.  doi: 10.1016/0022-1236(90)90094-2.

[39]

A. Sá Barreto, Second microlocal ellipticity and propagation of conormality for semilinear wave equations, J. Funct. Anal., 102 (1991), 47-71.  doi: 10.1016/0022-1236(91)90135-R.

[40]

A. Sá Barreto, Evolution of semilinear waves with swallowtail singularities, Duke Math. J., 75 (1994), 645-710.  doi: 10.1215/S0012-7094-94-07520-0.

[41]

A. Sá Barreto, G. Uhlmann and Y. Wang, Inverse scattering for critical semilinear wave equations, preprint, arXiv: 2003.03822.

[42]

A. Sá Barreto and Y. Wang, Singularities generated by the triple interaction of semilinear conormal waves, preprint, arXiv: 1809.09253.

[43]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.  doi: 10.1090/S0002-9947-1958-0092943-6.

[44]

G. Uhlmann and Y. Wang, Determination of space-time structures from gravitational perturbations, Comm. Pure Appl. Math., 73 (2020), 1315-1367.  doi: 10.1002/cpa.21882.

Figure 1.  The interaction of three conormal plane waves in two space dimensions. The only possible singularities created by the triple interaction appear on the surface of the light cone. Fig.3, Fig.5 and Fig.4 below illustrate the higher dimensional cases
Figure 2.  A swallowtail singularity formed on the light cone emanating from a point in two space dimensions. This can be due to the existence of conjugate points of the geodesic flow in the case $ P = D_t^2-\Delta_g, $ $ g $ a Riemannian metric in $ {{\mathbb{R}}^{2}}. $ The solution to (2.4) would remain conormal to $ {\mathcal{Q}} $ away from the caustic, but other singularities could be generated by the caustic. This figure resembles one after equation 5.1.24 in Duistermaat's book [15]
Figure 3.  The dotted line represents an expanding cylindrical wave, generated by the interaction of three plane waves given by (3.1) in $ {{\mathbb{R}}^{4}}, $ viewed by an observer in $ {\mathbb{R}}^3 $ as time increases. The speed in which the radius of the wave expands is equal to one
Figure 4.  Singularities produced by the intersection of three plane waves (3.2). An observer in $ {\mathbb{R}}^3 $ sees a conic shaped wave
Figure 5.  The dotted line shows the surface (3.4) as $ (x_1,x_2,x_3) $ vary for $ t $ fixed. Unlike the wave formed by the interaction of three plane waves considered above, which is an infinite cylinder, three spherical waves intersect along a bounded curve for fixed time. The level sets of this surface for $ \{x_3 = c\} $ are circles centered on the line $ \{x_1 = a, x_2 = b\}. $
[1]

Hideo Kubo. Asymptotic behavior of solutions to semilinear wave equations with dissipative structure. Conference Publications, 2007, 2007 (Special) : 602-613. doi: 10.3934/proc.2007.2007.602

[2]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[3]

Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations and Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065

[4]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[5]

Bixiang Wang. Asymptotic behavior of supercritical wave equations driven by colored noise on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4185-4229. doi: 10.3934/dcdsb.2021223

[6]

P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393

[7]

Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183

[8]

Meng-Rong Li. Estimates for the life-span of the solutions for some semilinear wave equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 417-432. doi: 10.3934/cpaa.2008.7.417

[9]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[10]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[11]

Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721

[12]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Semilinear wave equations of viscoelasticity in the minimal state framework. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1535-1552. doi: 10.3934/dcds.2010.27.1535

[13]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[14]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[15]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure and Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[16]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control and Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[17]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations and Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[18]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[19]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[20]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (273)
  • HTML views (178)
  • Cited by (1)

Other articles
by authors

[Back to Top]