[1]
|
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024.
|
[2]
|
S. G. Chang, B. Yu and M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9 (2000), 1532-1546.
doi: 10.1109/83.862633.
|
[3]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[4]
|
D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455.
doi: 10.1093/biomet/81.3.425.
|
[5]
|
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969.
|
[6]
|
G. Gilboa, J. Darbon, S. Osher and T. Chan, Nonlocal convex functionals for image regularization, UCLA CAM Report, 06–57.
|
[7]
|
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358.
|
[8]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul, 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[9]
|
S. Gu, L. Zhang, W. Zuo and X. Feng, Weighted nuclear norm minimization with application to image denoising, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (2014), 2862–2869.
doi: 10.1109/CVPR.2014.366.
|
[10]
|
H. Hu and J. Froment, Nonlocal total variation for image denoising, in Symposium on Photonics and Optoelectronics (SOPO), 2012, IEEE, (2012), 1–4.
doi: 10.1109/SOPO.2012.6270982.
|
[11]
|
H. Hu, J. Froment and Q. Liu, A note on patch-based low-rank minimization for fast image denoising, J. Visual Commun. Image Representation, 50 (2018), 100-110.
doi: 10.1016/j.jvcir.2017.11.013.
|
[12]
|
I. M. Johnstone and B. W. Silverman, Wavelet threshold estimators for data with correlated noise, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59 (1997), 319-351.
doi: 10.1111/1467-9868.00071.
|
[13]
|
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), 1091-1115.
doi: 10.1137/050622249.
|
[14]
|
C. Knaus and M. Zwicker, Dual-domain image denoising, IEEE Trans. Image Process., 23 (2014), 3114-3125.
doi: 10.1109/TIP.2014.2326771.
|
[15]
|
S. Lefkimmiatis and S. Osher, Non-local structure tensor functionals for image regularization, IEEE Transactions on Computational Imaging, 1 (2015), 16-29.
doi: 10.1109/TCI.2015.2434616.
|
[16]
|
S. Lefkimmiatis, Universal denoising networks: A novel CNN architecture for image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 3204–3213.
doi: 10.1109/CVPR.2018.00338.
|
[17]
|
Z. Li, F. Malgouyres and T. Zeng, Regularized non-local total variation and application in image restoration, J. Math. Imaging Vis., 59 (2017), 296-317.
doi: 10.1007/s10851-017-0732-6.
|
[18]
|
J. Liu and X. Zheng, A block nonlocal TV method for image restoration, SIAM J. Imaging Sciences, 10 (2017), 920-941.
doi: 10.1137/16M1074163.
|
[19]
|
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2.
|
[20]
|
C. Louchet and L. Moisan, Total variation as a local filter, SIAM J. Imaging Sci., 4 (2011), 651-694.
doi: 10.1137/100785855.
|
[21]
|
J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, Non-local sparse models for image restoration, in 2009 IEEE 12th International Conference on Computer Vision, IEEE, (2009), 2272–2279.
doi: 10.1109/ICCV.2009.5459452.
|
[22]
|
N. Pierazzo, M. Lebrun, M. E. Rais, J.-M. Morel and G. Facciolo, Non-local dual image denoising, in 2014 IEEE International Conference on Image Processing (ICIP), IEEE, (2014), 813–817.
|
[23]
|
S. Ramani, T. Blu and M. Unser, Monte-carlo sure: A black-box optimization of regularization parameters for general denoising algorithms, IEEE Trans. Image Process., 17 (2008), 1540-1554.
doi: 10.1109/TIP.2008.2001404.
|
[24]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[25]
|
C. M. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9 (1981), 1135-1151.
doi: 10.1214/aos/1176345632.
|
[26]
|
S. Tang, W. Gong, W. Li and W. Wang, Non-blind image deblurring method by local and nonlocal total variation models, Signal Processing, 94 (2014), 339-349.
doi: 10.1016/j.sigpro.2013.07.005.
|
[27]
|
D. Van De Ville and M. Kocher, Sure-based non-local means, IEEE Signal Process. Lett., 16 (2009), 973-976.
|
[28]
|
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res., 11 (2010), 3371-3408.
|
[29]
|
M. Werlberger, T. Pock and H. Bischof, Motion estimation with non-local total variation regularization, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 2464–2471.
doi: 10.1109/CVPR.2010.5539945.
|
[30]
|
J. Xie, L. Xu and E. Chen, Image denoising and inpainting with deep neural networks, in Advances in Neural Information Processing Systems, (2012), 341–349.
|
[31]
|
K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26 (2017), 3142-3155.
doi: 10.1109/TIP.2017.2662206.
|
[32]
|
K. Zhang, W. Zuo and L. Zhang, FFDNet: Toward a fast and flexible solution for CNN-based image denoising, IEEE Trans. Image Process., 27 (2018), 4608-4622.
doi: 10.1109/TIP.2018.2839891.
|
[33]
|
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), 253–276.
doi: 10.1137/090746379.
|
[34]
|
X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal total variation, Inverse Probl. Imaging, 4 (2010), 191-210.
doi: 10.3934/ipi.2010.4.191.
|