doi: 10.3934/ipi.2020060

Leaf Peeling method for the wave equation on metric tree graphs

1. 

University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA

2. 

Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991, Russia

3. 

University of Alaska Fairbanks, Fairbanks, AK 99775-6660, USA

* Corresponding author: Yuanyuan Zhao

Received  December 2019 Revised  July 2020 Published  October 2020

Fund Project: The research of the first author was supported in part by the National Science Foundation, grant DMS 1909869 and by the Ministry of Education and Science of Republic of Kazakhstan under the grant No. AP05136197. The research of the second author was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1242789

We consider the dynamical inverse problem for the wave equation on a metric tree graph and describe the dynamical Leaf Peeling (LP) method. The main step of the method is recalculating the response operator from the original tree to a peeled tree. The LP method allows us to recover the connectivity, potential function on a tree graph and the lengths of its edges from the response operator given on a finite time interval.

Citation: Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems & Imaging, doi: 10.3934/ipi.2020060
References:
[1]

F. Ali Mehmeti, Nonlinear Waves in Networks, Mathematical Research, 1994.  Google Scholar

[2]

F. Ali Mehmeti and E. Meister, Regular solutions of transmission and interaction problems for wave equations, Mathematical Methods in the Applied Sciences, 11 (1989), 665-685.  doi: 10.1002/mma.1670110507.  Google Scholar

[3]

S. A. AvdoninM. I. Belishev and S. A. Ivanov, Boundary control and a matrix inverse problem for the equation, Mathematics of the USSR-Sbornik, 72 (1992), 287-310.  doi: 10.1070/SM1992v072n02ABEH002141.  Google Scholar

[4]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Problems and Imaging, 9 (2015), 645-659.  doi: 10.3934/ipi.2015.9.645.  Google Scholar

[5]

S. AvdoninJ. BellV. Mikhaylov and K. Nurtazina, Source and coefficient identification problems for the wave equation on graphs, Mathematical Methods in the Applied Sciences, 42 (2019), 5029-5039.  doi: 10.1002/mma.5229.  Google Scholar

[6]

S. AvdoninJ. Bell and K. Nurtazina, Determining distributed parameters in a neuronal cable model on a tree graph, Mathematical Methods in the Applied Sciences, 40 (2017), 3973-3981.  doi: 10.1002/mma.4277.  Google Scholar

[7]

S. AvdoninC. Rivero AbdonG. Leugering and V. Mikhaylov, On the inverse problem of the two-velocity tree-like graph, Zeit. Angew. Math. Mech., 95 (2015), 1490-1500.  doi: 10.1002/zamm.201400126.  Google Scholar

[8]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Problems and Imaging, 2 (2008), 1-21.  doi: 10.3934/ipi.2008.2.1.  Google Scholar

[9]

S. AvdoninP. Kurasov and M. Nowaczyk, Inverse problems for quantum trees II: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598.  doi: 10.3934/ipi.2010.4.579.  Google Scholar

[10]

S. AvdoninG. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, Zeit. Angew. Math. Mech., 90 (2010), 136-150.  doi: 10.1002/zamm.200900295.  Google Scholar

[11]

S. Avdonin and V. E. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 099801, 2pp. doi: 10.1088/0266-5611/26/9/099801.  Google Scholar

[12]

S. A. AvdoninV. S. Mikhaylov and K. B. Nurtazina, On inverse dynamical and spectral problems for the wave and schrödinger equations on finite trees. The leaf peeling method, Journal of Mathematical Sciences, 224 (2017), 1-10.  doi: 10.1007/s10958-017-3388-2.  Google Scholar

[13]

S. Avdonin and S. Nicaise, Source identification problems for the wave equation on graphs, Inverse Problems, 31 (2015), 095007, 29pp. doi: 10.1088/0266-5611/31/9/095007.  Google Scholar

[14]

S. Avdonin and Y. Zhao, Exact controllability of the 1-d wave equation on finite metric tree graphs, Applied Mathematics & Optimization, 2019, 1–24. doi: 10.1007/s00245-019-09629-3.  Google Scholar

[15]

M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.  doi: 10.1088/0266-5611/20/3/002.  Google Scholar

[16]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, 186, American Mathematical Soc., 2013. doi: 10.1090/surv/186.  Google Scholar

[17]

B. M. Brown and R. Weikard, A borg–levinson theorem for trees, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 461 (2005), 3231–3243. doi: 10.1098/rspa.2005.1513.  Google Scholar

[18]

R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the American Mathematical Society, 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[19]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Springer Science & Business Media, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[20]

N. I. Gerasimenko and B. S. Pavlov, Scattering problems on noncompact graphs, Theoretical and Mathematical Physics, 74 (1988), 230-240.  doi: 10.1007/BF01016616.  Google Scholar

[21]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, On the analysis and control of hyperbolic systems associated with vibrating networks, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 124 (1994), 77-104.  doi: 10.1017/S0308210500029206.  Google Scholar

[22]

V. N. Pivovarchik, An inverse sturm-liouville problem by three spectra, Integral Equations and Operator Theory, 34 (1999), 234-243.  doi: 10.1007/BF01236474.  Google Scholar

[23]

V. Yurko, Inverse spectral problems for sturm–liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086.  doi: 10.1088/0266-5611/21/3/017.  Google Scholar

show all references

References:
[1]

F. Ali Mehmeti, Nonlinear Waves in Networks, Mathematical Research, 1994.  Google Scholar

[2]

F. Ali Mehmeti and E. Meister, Regular solutions of transmission and interaction problems for wave equations, Mathematical Methods in the Applied Sciences, 11 (1989), 665-685.  doi: 10.1002/mma.1670110507.  Google Scholar

[3]

S. A. AvdoninM. I. Belishev and S. A. Ivanov, Boundary control and a matrix inverse problem for the equation, Mathematics of the USSR-Sbornik, 72 (1992), 287-310.  doi: 10.1070/SM1992v072n02ABEH002141.  Google Scholar

[4]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Problems and Imaging, 9 (2015), 645-659.  doi: 10.3934/ipi.2015.9.645.  Google Scholar

[5]

S. AvdoninJ. BellV. Mikhaylov and K. Nurtazina, Source and coefficient identification problems for the wave equation on graphs, Mathematical Methods in the Applied Sciences, 42 (2019), 5029-5039.  doi: 10.1002/mma.5229.  Google Scholar

[6]

S. AvdoninJ. Bell and K. Nurtazina, Determining distributed parameters in a neuronal cable model on a tree graph, Mathematical Methods in the Applied Sciences, 40 (2017), 3973-3981.  doi: 10.1002/mma.4277.  Google Scholar

[7]

S. AvdoninC. Rivero AbdonG. Leugering and V. Mikhaylov, On the inverse problem of the two-velocity tree-like graph, Zeit. Angew. Math. Mech., 95 (2015), 1490-1500.  doi: 10.1002/zamm.201400126.  Google Scholar

[8]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Problems and Imaging, 2 (2008), 1-21.  doi: 10.3934/ipi.2008.2.1.  Google Scholar

[9]

S. AvdoninP. Kurasov and M. Nowaczyk, Inverse problems for quantum trees II: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598.  doi: 10.3934/ipi.2010.4.579.  Google Scholar

[10]

S. AvdoninG. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, Zeit. Angew. Math. Mech., 90 (2010), 136-150.  doi: 10.1002/zamm.200900295.  Google Scholar

[11]

S. Avdonin and V. E. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 099801, 2pp. doi: 10.1088/0266-5611/26/9/099801.  Google Scholar

[12]

S. A. AvdoninV. S. Mikhaylov and K. B. Nurtazina, On inverse dynamical and spectral problems for the wave and schrödinger equations on finite trees. The leaf peeling method, Journal of Mathematical Sciences, 224 (2017), 1-10.  doi: 10.1007/s10958-017-3388-2.  Google Scholar

[13]

S. Avdonin and S. Nicaise, Source identification problems for the wave equation on graphs, Inverse Problems, 31 (2015), 095007, 29pp. doi: 10.1088/0266-5611/31/9/095007.  Google Scholar

[14]

S. Avdonin and Y. Zhao, Exact controllability of the 1-d wave equation on finite metric tree graphs, Applied Mathematics & Optimization, 2019, 1–24. doi: 10.1007/s00245-019-09629-3.  Google Scholar

[15]

M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672.  doi: 10.1088/0266-5611/20/3/002.  Google Scholar

[16]

G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, 186, American Mathematical Soc., 2013. doi: 10.1090/surv/186.  Google Scholar

[17]

B. M. Brown and R. Weikard, A borg–levinson theorem for trees, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 461 (2005), 3231–3243. doi: 10.1098/rspa.2005.1513.  Google Scholar

[18]

R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the American Mathematical Society, 351 (1999), 4069-4088.  doi: 10.1090/S0002-9947-99-02175-3.  Google Scholar

[19]

R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Springer Science & Business Media, 2006. doi: 10.1007/3-540-37726-3.  Google Scholar

[20]

N. I. Gerasimenko and B. S. Pavlov, Scattering problems on noncompact graphs, Theoretical and Mathematical Physics, 74 (1988), 230-240.  doi: 10.1007/BF01016616.  Google Scholar

[21]

J. E. LagneseG. Leugering and E. J. P. G. Schmidt, On the analysis and control of hyperbolic systems associated with vibrating networks, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 124 (1994), 77-104.  doi: 10.1017/S0308210500029206.  Google Scholar

[22]

V. N. Pivovarchik, An inverse sturm-liouville problem by three spectra, Integral Equations and Operator Theory, 34 (1999), 234-243.  doi: 10.1007/BF01236474.  Google Scholar

[23]

V. Yurko, Inverse spectral problems for sturm–liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086.  doi: 10.1088/0266-5611/21/3/017.  Google Scholar

Figure 1.  The neighborhood of $ v_i $
Figure 2.  The propagation of $ \delta(t) $ from $ \gamma_i $. Vertex $ v_3 $ may be adjacent to either $ v_1 $ or $ v_2 $
Figure 3.  A sheaf on a tree graph rooted at $ \gamma_m $ (the sheaf is in solid lines), in which $ v_0 $ is the abscission vertex and $ e_0 $ is the stem edge
[1]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[4]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[5]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[6]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[7]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[8]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[11]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[12]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[15]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[17]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[18]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[19]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[20]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (45)
  • HTML views (145)
  • Cited by (1)

Other articles
by authors

[Back to Top]