[1]
|
V. Albani, P. Elbau, M. de Hoop and O. Scherzer, Optimal convergence rates results for linear inverse problems in Hilbert spaces, Numerical Functional Analysis and Optimization, 37 (2016), 521-540.
doi: 10.1080/01630563.2016.1144070.
|
[2]
|
K. Atkinson and W. Han, Theoreitcal Numerical Analysis: A Functional Analysis Framework. Third Edition, Springer: New York, 2009.
doi: 10.1007/978-1-4419-0458-4.
|
[3]
|
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer: Cham, 2017.
doi: 10.1007/978-3-319-48311-5.
|
[4]
|
C. Clason, B. Kaltenbacher and E. Resmerita, Regularization of ill-posed problems with non-negative solutions, Splitting Algorithms, Modern Operator Theory and Applications, H. Bauschke, R. Burachik, R. Luke (eds.), 2019,113–135.
|
[5]
|
A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B, 39 (1977), 1-38.
doi: 10.1111/j.2517-6161.1977.tb01600.x.
|
[6]
|
B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert space, Numerical Functional Analysis and Optimization, 13 (1992), 413-429.
doi: 10.1080/01630569208816489.
|
[7]
|
H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems, 5 (1989), 523-540.
doi: 10.1088/0266-5611/5/4/007.
|
[8]
|
J. Flemming and B. Hofmann, Convergence rates in constrained Tikhonov regularization: Equivalence of projected source conditions and variational inequalities, Inverse Problems, 27 (2011), 085001, 11pp.
doi: 10.1088/0266-5611/27/8/085001.
|
[9]
|
M. Haltmeier, A. Leitao and E. Resmerita, On regularization methods of EM-Kaczmarz type, Inverse Problems, 25 (2009), 075008, 17pp.
doi: 10.1088/0266-5611/25/7/075008.
|
[10]
|
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.
doi: 10.1007/s002110050158.
|
[11]
|
G. Helmberg, Introduction to Spectral Theory in Hilbert Spaces, North Holland: Amsterdam, 1969.
|
[12]
|
B. Hofmann and R. Plato, On ill-posedness concepts, stable solvability and saturation, J. Inverse Ill-Posed Probl., 26 (2018), 287-297.
doi: 10.1515/jiip-2017-0090.
|
[13]
|
Y. Korolev, Making use of a partial order in solving inverse problems: II, Inverse Problems, 30 (2014), 085003, 9pp.
doi: 10.1088/0266-5611/30/8/085003.
|
[14]
|
R. Lagendijk, J. Biemond and D. Boekee, Regularized iterative image restoration with ringing reduction, IEEE Transactions on Acoustics Speech and Signal Processing, 36 (1988), 1874-1888.
doi: 10.1109/29.9032.
|
[15]
|
P. Lions, Approximation de points fixes de contractions, Comptes rendus de l'Académie des sciences, Série A-B Paris, 284 (1977), 1357-1359.
|
[16]
|
P. Mathé and S. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003), 789-803.
doi: 10.1088/0266-5611/19/3/319.
|
[17]
|
A. Neubauer, Tikhonov-regularization of ill-posed linear operator equations on closed convex sets, Journal of Approximation Theory, 53 (1988), 304-320.
doi: 10.1016/0021-9045(88)90025-1.
|
[18]
|
A. Neubauer, On converse and saturation results for Tikhonov regularization of linear ill-posed problems, SIAM Journal on Numerical Analysis, 34 (1997), 517-527.
doi: 10.1137/S0036142993253928.
|
[19]
|
M. Piana and M. Bertero, Projected Landweber method and preconditioning, Inverse Problems, 13 (1997), 441-463.
doi: 10.1088/0266-5611/13/2/016.
|
[20]
|
E. Schock, Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence, Constructive Methods for the Practical Treatment of Integral Equations, 73 (1985), 234-243.
|
[21]
|
A. Tikhonov, A. Goncharsky, V. Stepanov and A. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Kluwer: Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7.
|
[22]
|
G. Vainikko and A. Veretennikov, Iteration Procedures in Ill-Posed Problems, Moscow: Nauka (In Russian), 1986.
|
[23]
|
R. Wittmann, Approximation of fixed points of non-expansive mappings, Arch. Math., 58 (1992), 486-491.
doi: 10.1007/BF01190119.
|
[24]
|
Y. Zhang, P. Forssén, T. Fornstedt, M. Gulliksson and X. Dai, An adaptive regularization algorithm for recovering the rate constant distribution from biosensor data, Inverse Problems in Science & Engineering, 26 (2018), 1464-1489.
doi: 10.1080/17415977.2017.1411912.
|
[25]
|
Y. Zhang and B. Hofmann, On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces, Fractional Calculus and Applied Analysis, 22 (2019), 699-721.
doi: 10.1515/fca-2019-0039.
|
[26]
|
Y. Zhang and B. Hofmann, On the second order asymptotical regularization of linear ill-posed inverse problems, Applicable Analysis, 99 (2020), 1000-1025.
doi: 10.1080/00036811.2018.1517412.
|