-
Previous Article
Imaging junctions of waveguides
- IPI Home
- This Issue
-
Next Article
An adaptive total variational despeckling model based on gray level indicator frame
Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex
1. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China |
2. | South Ukrainian national Pedagogical University, Staroprtofrankovskaya str., 26, Odessa 65020, Ukraine |
A spectral problem occurring in description of small transverse vibrations of a star graph of Stieltjes strings is considered. At all but one pendant vertices Dirichlet conditions are imposed which mean that these vertices are clamped. One vertex (the root) can move with damping in the direction orthogonal to the equilibrium position of the strings. We describe the spectrum of such spectral problem. The corresponding inverse problem lies in recovering the values of point masses and the lengths of the intervals between the masses using the spectrum and some other parameters. We propose conditions on a sequence of complex numbers and a collection of real numbers to be the spectrum of a problem we consider and the lengths of the edges, correspondingly.
References:
[1] |
O. Boyko, O. Martynyuk and V. Pivovarchik,
On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods of Funct. Anal. Topology, 25 (2019), 104-117.
|
[2] |
J. Genin and J. S. Maybee,
Mechanical vibrations trees, J. Math. Anal. Appl., 45 (1974), 746-763.
doi: 10.1016/0022-247X(74)90065-1. |
[3] |
G. Gladwell, Inverse Problems in Vibration, Kluwer Academic Publishers, Dordrecht, 2004. |
[4] |
G. Gladwell, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lect., SpringerWienNewYork, Vienna, 529 (2011), 1–28.
doi: 10.1007/978-3-7091-0696-9_1. |
[5] |
F. R. Gantmakher and M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations of Mechanical Systems (in Russian), GITTL, Moscow-Leningrad, (1950), Revised edition, AMS Chelsea Publishing, Providence, RI, 2002.
doi: 10.1090/chel/345. |
[6] |
V. A. Marchenko, Introduction to The Theory of Inverse Problems of Spectral Analysis (in Russian), Acta, Kharkov, 2005. Google Scholar |
[7] |
O. Martynyuk, V. Pivovarchik and C. Tretter,
Inverse problem for a damped Stieltjes string from parts of spectra, Appl. Anal., 94 (2015), 2605-2619.
doi: 10.1080/00036811.2014.996874. |
[8] |
M. Möller and V. Pivovarchik,
Damped star graphs of Stieltjes strings, Proc. Amer. Math. Soc., 145 (2017), 1717-1728.
doi: 10.1090/proc/13367. |
[9] |
M. Möller and V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser, Cham, 2015.
doi: 10.1007/978-3-319-17070-1. |
[10] |
V. Pivovarchik, Existence of a tree of Stieltjes strings corresponding to two given spectra,, J. Phys. A, 42 (2009), 375213, 16 pp.
doi: 10.1088/1751-8113/42/37/375213. |
[11] |
V. Pivovarchik, N. Rozhenko and C. Tretter,
Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra Appl., 439 (2013), 2263-2292.
doi: 10.1016/j.laa.2013.07.003. |
[12] |
V. Pivovarchik and C. Tretter,
Location and multiplicities of eigenvalues for a star graph of Stieltjes strings, J. Difference Equ. Appl., 21 (2015), 383-402.
doi: 10.1080/10236198.2014.992425. |
[13] |
K. Veselić,
On linear vibrational systems with one dimensional damping, Appl. Anal., 29 (1988), 1-18.
doi: 10.1080/00036818808839770. |
[14] |
K. Veselić,
On linear vibrational systems with one dimensional damping II, Integr. Equ. Oper. Theory, 13 (1990), 883-897.
doi: 10.1007/BF01198923. |
show all references
References:
[1] |
O. Boyko, O. Martynyuk and V. Pivovarchik,
On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph, Methods of Funct. Anal. Topology, 25 (2019), 104-117.
|
[2] |
J. Genin and J. S. Maybee,
Mechanical vibrations trees, J. Math. Anal. Appl., 45 (1974), 746-763.
doi: 10.1016/0022-247X(74)90065-1. |
[3] |
G. Gladwell, Inverse Problems in Vibration, Kluwer Academic Publishers, Dordrecht, 2004. |
[4] |
G. Gladwell, Matrix inverse eigenvalue problems, Dynamical Inverse Problems: Theory and Application, CISM Courses and Lect., SpringerWienNewYork, Vienna, 529 (2011), 1–28.
doi: 10.1007/978-3-7091-0696-9_1. |
[5] |
F. R. Gantmakher and M. G. Krein, Oscillating Matrices and Kernels and Small Vibrations of Mechanical Systems (in Russian), GITTL, Moscow-Leningrad, (1950), Revised edition, AMS Chelsea Publishing, Providence, RI, 2002.
doi: 10.1090/chel/345. |
[6] |
V. A. Marchenko, Introduction to The Theory of Inverse Problems of Spectral Analysis (in Russian), Acta, Kharkov, 2005. Google Scholar |
[7] |
O. Martynyuk, V. Pivovarchik and C. Tretter,
Inverse problem for a damped Stieltjes string from parts of spectra, Appl. Anal., 94 (2015), 2605-2619.
doi: 10.1080/00036811.2014.996874. |
[8] |
M. Möller and V. Pivovarchik,
Damped star graphs of Stieltjes strings, Proc. Amer. Math. Soc., 145 (2017), 1717-1728.
doi: 10.1090/proc/13367. |
[9] |
M. Möller and V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser, Cham, 2015.
doi: 10.1007/978-3-319-17070-1. |
[10] |
V. Pivovarchik, Existence of a tree of Stieltjes strings corresponding to two given spectra,, J. Phys. A, 42 (2009), 375213, 16 pp.
doi: 10.1088/1751-8113/42/37/375213. |
[11] |
V. Pivovarchik, N. Rozhenko and C. Tretter,
Dirichlet-Neumann inverse spectral problem for a star graph of Stieltjes strings, Linear Algebra Appl., 439 (2013), 2263-2292.
doi: 10.1016/j.laa.2013.07.003. |
[12] |
V. Pivovarchik and C. Tretter,
Location and multiplicities of eigenvalues for a star graph of Stieltjes strings, J. Difference Equ. Appl., 21 (2015), 383-402.
doi: 10.1080/10236198.2014.992425. |
[13] |
K. Veselić,
On linear vibrational systems with one dimensional damping, Appl. Anal., 29 (1988), 1-18.
doi: 10.1080/00036818808839770. |
[14] |
K. Veselić,
On linear vibrational systems with one dimensional damping II, Integr. Equ. Oper. Theory, 13 (1990), 883-897.
doi: 10.1007/BF01198923. |
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[2] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[3] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[4] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[5] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
[6] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[7] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[8] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[9] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[10] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[11] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[12] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
[13] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[14] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[15] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[16] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[17] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[18] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[19] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[20] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
2019 Impact Factor: 1.373
Tools
Article outline
[Back to Top]