April  2021, 15(2): 271-283. doi: 10.3934/ipi.2020064

Inverse scattering and stability for the biharmonic operator

Department of Mathematics, Purdue University, West Lafayette, IN 47907

Received  April 2020 Revised  August 2020 Published  April 2021 Early access  November 2020

Fund Project: The author is partially supported by a NSF DMS grants No. 1600327 and 1900475

We investigate the inverse scattering problem of the perturbed biharmonic operator by studying the recovery process of the magnetic field $ {\mathbf{A}} $ and the potential field $ V $. We show that the high-frequency asymptotic of the scattering amplitude of the biharmonic operator uniquely determines $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $. We study the near-field scattering problem and show that the high-frequency asymptotic expansion up to an error $ \mathcal{O}(\lambda^{-4}) $ recovers above two quantities with no additional information about $ {\mathbf{A}} $ and $ V $. We also establish stability estimates for $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $.

Citation: Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064
References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

show all references

References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[1]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems & Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[2]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems & Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[3]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[4]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[5]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[6]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[7]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[8]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[9]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[10]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[11]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[12]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[13]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026

[14]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[15]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[16]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[17]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[18]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[19]

Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286

[20]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (203)
  • HTML views (201)
  • Cited by (0)

Other articles
by authors

[Back to Top]