April  2021, 15(2): 271-283. doi: 10.3934/ipi.2020064

Inverse scattering and stability for the biharmonic operator

Department of Mathematics, Purdue University, West Lafayette, IN 47907

Received  April 2020 Revised  August 2020 Published  November 2020

Fund Project: The author is partially supported by a NSF DMS grants No. 1600327 and 1900475

We investigate the inverse scattering problem of the perturbed biharmonic operator by studying the recovery process of the magnetic field $ {\mathbf{A}} $ and the potential field $ V $. We show that the high-frequency asymptotic of the scattering amplitude of the biharmonic operator uniquely determines $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $. We study the near-field scattering problem and show that the high-frequency asymptotic expansion up to an error $ \mathcal{O}(\lambda^{-4}) $ recovers above two quantities with no additional information about $ {\mathbf{A}} $ and $ V $. We also establish stability estimates for $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $.

Citation: Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064
References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

show all references

References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[1]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[8]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[9]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[10]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[12]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[14]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[15]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[20]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (66)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]