• Previous Article
    A new variational approach based on level-set function for convex hull problem with outliers
  • IPI Home
  • This Issue
  • Next Article
    Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory
doi: 10.3934/ipi.2020064

Inverse scattering and stability for the biharmonic operator

Department of Mathematics, Purdue University, West Lafayette, IN 47907

Received  April 2020 Revised  August 2020 Published  November 2020

Fund Project: The author is partially supported by a NSF DMS grants No. 1600327 and 1900475

We investigate the inverse scattering problem of the perturbed biharmonic operator by studying the recovery process of the magnetic field $ {\mathbf{A}} $ and the potential field $ V $. We show that the high-frequency asymptotic of the scattering amplitude of the biharmonic operator uniquely determines $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $. We study the near-field scattering problem and show that the high-frequency asymptotic expansion up to an error $ \mathcal{O}(\lambda^{-4}) $ recovers above two quantities with no additional information about $ {\mathbf{A}} $ and $ V $. We also establish stability estimates for $ {\rm{curl}}\ {\mathbf{A}} $ and $ V-\frac{1}{2}\nabla\cdot{\mathbf{A}} $.

Citation: Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, doi: 10.3934/ipi.2020064
References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

show all references

References:
[1]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[2]

G. M. Henkin and R. G. Novikov, The $\bar{\partial}$-Equation in the multi-dimensional inverse scattering problem, Usp. Mat. Nauk., 42 (1987), 93-152.   Google Scholar

[3]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman Hall/CRC-press, 2001. doi: 10.1201/9781420036220.  Google Scholar

[4]

K. Krupchyk, M. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 262 (2012), 1781–1801. doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[5]

G. NakamuraZ. Uhlmann and G. Sun, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[6]

R. G. Newton, Variational principles for inverse scattering, Inverse Probl., 1 (1985), 371-380.  doi: 10.1088/0266-5611/1/4/008.  Google Scholar

[7]

B. Pausader, Scattering for the defocusing beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791-822.  doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[8]

M. Reed and B. Simon, Methods of Modern Mathematical Physics Ill: Scattering Theory, New York, San Francisco, London: Academic Press 1979.  Google Scholar

[9]

V. Serov, Fourier Series, Fourier Transform and Their Applications to Mathematical Physics, Springer, 2017.  Google Scholar

[10]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[11]

P. Stefanov, Scattering and inverse scattering in ${\mathbf{R}}^n$. http://www.math.purdue.edu/ stefanov/publications/SCATTERING.pdf. Google Scholar

[12]

P. D. Stefanov, Inverse scattering problem for the wave equation with time dependent potential, C. R. Acad. Bulg. Sci., 40 (1987), 29-30.   Google Scholar

[13]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[14]

Z. Q. Sun, An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[15]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problem and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[16]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20 pp. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[1]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[14]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.373

Article outline

[Back to Top]