April  2021, 15(2): 285-314. doi: 10.3934/ipi.2020065

Imaging junctions of waveguides

1. 

Laboratoire POEMS, ENSTA Paris, 828 Boulevard des Maréchaux, 91120 Palaiseau, France

2. 

Université Paris-Saclay, CEA, LIST, F-91120 Palaiseau, France

* Corresponding author: Laurent Bourgeois

Received  April 2020 Revised  September 2020 Published  April 2021 Early access  November 2020

In this paper we address the identification of defects by the Linear Sampling Method in half-waveguides which are related to each other by junctions. Firstly a waveguide which is characterized by an abrupt change of properties is considered, secondly the more difficult case of several half-waveguides related to each other by a junction of complex geometry. Our approach is illustrated by some two-dimensional numerical experiments.

Citation: Laurent Bourgeois, Jean-François Fritsch, Arnaud Recoquillay. Imaging junctions of waveguides. Inverse Problems and Imaging, 2021, 15 (2) : 285-314. doi: 10.3934/ipi.2020065
References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.  doi: 10.3934/ipi.2015.9.625.

[2]

V. BaronianL. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.  doi: 10.1016/j.wavemoti.2016.05.006.

[3]

V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp. doi: 10.1088/1361-6420/aac21e.

[4]

A.-S. Bonnet-Bendhia and A. Tillequin, A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.  doi: 10.1142/S0218396X01001005.

[5]

L. BorceaF. Cakoni and S. Meng, A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.  doi: 10.1016/j.jcp.2019.04.072.

[6]

L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp. doi: 10.1088/1361-6420/ab2c9b.

[7]

L. Borcea and D.-L. Nguyen, Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.  doi: 10.3934/ipi.2016027.

[8]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp. doi: 10.1088/0266-5611/24/1/015018.

[9]

L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp. doi: 10.1088/0266-5611/27/5/055001.

[10]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp. doi: 10.1088/0266-5611/29/2/025017.

[11]

L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp. doi: 10.1088/0266-5611/30/9/095004.

[12]

L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp. doi: 10.1088/0266-5611/28/10/105011.

[13]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023. doi: 10.1088/1742-6596/135/1/012023.

[14]

F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.

[15]

A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127. doi: 10.1142/9789812773197_0013.

[16]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.

[17]

D. ColtonM. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.  doi: 10.1088/0266-5611/13/6/005.

[18]

P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp. doi: 10.1088/0266-5611/32/5/055001.

[19]

P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp. doi: 10.1088/1361-6420/ab0cdc.

[20]

C. TsogkaD. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.  doi: 10.1137/130924238.

[21]

C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp. doi: 10.1088/0266-5611/32/12/125011.

[22]

C. TsogkaD. A. Mitsoudis and S. Papadimitropoulos, Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.  doi: 10.1137/17M1159051.

show all references

References:
[1]

L. AudibertA. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.  doi: 10.3934/ipi.2015.9.625.

[2]

V. BaronianL. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.  doi: 10.1016/j.wavemoti.2016.05.006.

[3]

V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp. doi: 10.1088/1361-6420/aac21e.

[4]

A.-S. Bonnet-Bendhia and A. Tillequin, A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.  doi: 10.1142/S0218396X01001005.

[5]

L. BorceaF. Cakoni and S. Meng, A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.  doi: 10.1016/j.jcp.2019.04.072.

[6]

L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp. doi: 10.1088/1361-6420/ab2c9b.

[7]

L. Borcea and D.-L. Nguyen, Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.  doi: 10.3934/ipi.2016027.

[8]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp. doi: 10.1088/0266-5611/24/1/015018.

[9]

L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp. doi: 10.1088/0266-5611/27/5/055001.

[10]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp. doi: 10.1088/0266-5611/29/2/025017.

[11]

L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp. doi: 10.1088/0266-5611/30/9/095004.

[12]

L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp. doi: 10.1088/0266-5611/28/10/105011.

[13]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023. doi: 10.1088/1742-6596/135/1/012023.

[14]

F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.

[15]

A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127. doi: 10.1142/9789812773197_0013.

[16]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.

[17]

D. ColtonM. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.  doi: 10.1088/0266-5611/13/6/005.

[18]

P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp. doi: 10.1088/0266-5611/32/5/055001.

[19]

P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp. doi: 10.1088/1361-6420/ab0cdc.

[20]

C. TsogkaD. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.  doi: 10.1137/130924238.

[21]

C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp. doi: 10.1088/0266-5611/32/12/125011.

[22]

C. TsogkaD. A. Mitsoudis and S. Papadimitropoulos, Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.  doi: 10.1137/17M1159051.

Figure 1.  Waveguide with an abrupt change of properties
Figure 2.  Obstacles within the waveguide
Figure 15.  Exact data on the section $ \Sigma^0 $. Left: $ R^0 = 1.1 $. Right: $ R^0 = 3 $
Figure 3.  A waveguide with a transition zone (the domain $ B_R $ is hatched)
Figure 4.  A junction of three half-waveguides (the domain $ B $ is hatched)
Figure 5.  Full-scattering, $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 60 $ ($ \tilde{P} = 20 $). Top left: obstacle 3 and exact data. Top right: obstacle 3 and noisy data. Bottom left: obstacle 4 and exact data. Bottom right: obstacle 4 and noisy data
Figure 6.  Back-scattering for obstacle 1. Top left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 20 $ ($ \tilde{P} = 7 $), exact data. Top right: $ \kappa = 40 $ and $ \tilde{\kappa} = 20 $, noisy data. Middle left: $ \kappa = \tilde{\kappa} = 40 $ ($ P = \tilde{P} = 13 $), exact data. Middle right: $ \kappa = \tilde{\kappa} = 40 $, noisy data. Bottom left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 60 $ ($ \tilde{P} = 20 $), exact data. Bottom right: $ \kappa = 40 $ and $ \tilde{\kappa} = 60 $, noisy data
Figure 7.  Back-scattering for obstacle 2. Top left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 20 $ ($ P = 7 $), exact data. Top right: $ \kappa = 40 $ and $ \tilde{\kappa} = 20 $, noisy data. Middle left: $ \kappa = \tilde{\kappa} = 40 $ ($ P = \tilde{P} = 13 $), exact data. Middle right: $ \kappa = \tilde{\kappa} = 40 $, noisy data. Bottom left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 60 $ ($ \tilde{P} = 20 $), exact data. Bottom right: $ \kappa = 40 $ and $ \tilde{\kappa} = 60 $, noisy data
Figure 8.  Back-scattering for obstacle 4. Top left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 20 $ ($ \tilde{P} = 7 $), exact data. Top right: $ \kappa = 40 $ and $ \tilde{\kappa} = 20 $, noisy data. Middle left: $ \kappa = \tilde{\kappa} = 40 $ ($ P = \tilde{P} = 13 $), exact data. Middle right: $ \kappa = \tilde{\kappa} = 40 $, noisy data. Bottom left: $ \kappa = 40 $ ($ P = 13 $) and $ \tilde{\kappa} = 60 $ ($ \tilde{P} = 20 $), exact data. Bottom right: $ \kappa = 40 $ and $ \tilde{\kappa} = 60 $, noisy data
Figure 9.  Full-scattering, obstacle 3, $ \kappa = \tilde{\kappa} = 40 $, $ h = 0.65 $ ($ P = 9 $) and $ \tilde{h} = 1 $ ($ \tilde{P} = 13 $). Left: exact data. Right: noisy data
Figure 10.  Back-scattering for obstacle 1, $ \kappa = \tilde{\kappa} = 30 $ and $ h>\tilde{h} $. Top left: $ h = 1 $ ($ P = 10 $) and $ \tilde{h} = 0.5 $ ($ \tilde{P} = 5 $), exact data. Top right: $ h = 1 $ and $ \tilde{h} = 0.5 $, noisy data. Bottom left: $ h = 1 $ ($ P = 10 $) and $ \tilde{h} = 0.75 $ ($ \tilde{P} = 8 $), exact data. Bottom right: $ h = 1 $ and $ \tilde{h} = 0.75 $, noisy data
Figure 11.  Back-scattering for obstacle 1, $ \kappa = \tilde{\kappa} = 30 $ and $ h<\tilde{h} $. Top left: $ h = 0.5 $ ($ P = 5 $) and $ \tilde{h} = 1 $ ($ \tilde{P} = 10 $), exact data. Top right: $ h = 0.5 $ and $ \tilde{h} = 1 $, noisy data. Bottom left: $ h = 0.75 $ ($ P = 8 $) and $ \tilde{h} = 1 $ ($ \tilde{P} = 10 $), exact data. Bottom right: $ h = 0.75 $ and $ \tilde{h} = 1 $, noisy data
Figure 12.  Back-scattering for obstacle 2, $ \kappa = \tilde{\kappa} = 30 $ and $ h>\tilde{h} $. Top left: $ h = 1 $ ($ P = 10 $) and $ \tilde{h} = 0.5 $ ($ \tilde{P} = 5 $), exact data. Top right: $ h = 1 $ and $ \tilde{h} = 0.5 $, noisy data. Bottom left: $ h = 1 $ ($ P = 10 $) and $ \tilde{h} = 0.75 $ ($ \tilde{P} = 8 $), exact data. Bottom right: $ h = 1 $ and $ \tilde{h} = 0.75 $, noisy data
Figure 13.  Back-scattering for obstacle 2, $ \kappa = \tilde{\kappa} = 30 $ and $ h<\tilde{h} $. Top left: $ h = 0.5 $ ($ P = 5 $) and $ \tilde{h} = 1 $ ($ \tilde{P} = 10 $), exact data. Top right: $ h = 0.5 $ and $ \tilde{h} = 1 $, noisy data. Bottom left: $ h = 0.75 $ ($ P = 8 $) and $ \tilde{h} = 1 $ ($ \tilde{P} = 10 $), exact data. Bottom right: $ h = 0.75 $ and $ \tilde{h} = 1 $, noisy data
Figure 14.  Data on a single half-waveguide. Top left: exact data on section $ \Sigma^0 $. Top right: noisy data on section $ \Sigma^0 $. Middle left: exact data on section $ \Sigma^1 $. Middle right: noisy data on section $ \Sigma^1 $. Bottom left: exact data on section $ \Sigma^2 $. Bottom right: noisy data on section $ \Sigma^2 $
Figure 16.  Top: data on two half-waveguides. Left: exact data on sections $ \Sigma^0 $ and $ \Sigma^1 $. Right: noisy data on sections $ \Sigma^0 $ and $ \Sigma^1 $. Bottom: data on three half-waveguides. Left: exact data on sections $ \Sigma^0 $, $ \Sigma^1 $ and $ \Sigma^2 $. Right: noisy data on sections $ \Sigma^0 $, $ \Sigma^1 $ and $ \Sigma^2 $
[1]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[2]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[3]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[4]

Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012

[5]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[6]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[7]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[8]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[9]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems and Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026

[10]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[11]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[12]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[13]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009

[14]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[15]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[16]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[17]

Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158

[18]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[19]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[20]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (250)
  • HTML views (194)
  • Cited by (0)

[Back to Top]