
-
Previous Article
A new variational approach based on level-set function for convex hull problem with outliers
- IPI Home
- This Issue
-
Next Article
Inverse scattering and stability for the biharmonic operator
Imaging junctions of waveguides
1. | Laboratoire POEMS, ENSTA Paris, 828 Boulevard des Maréchaux, 91120 Palaiseau, France |
2. | Université Paris-Saclay, CEA, LIST, F-91120 Palaiseau, France |
In this paper we address the identification of defects by the Linear Sampling Method in half-waveguides which are related to each other by junctions. Firstly a waveguide which is characterized by an abrupt change of properties is considered, secondly the more difficult case of several half-waveguides related to each other by a junction of complex geometry. Our approach is illustrated by some two-dimensional numerical experiments.
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
V. Baronian, L. Bourgeois and A. Recoquillay,
Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.
doi: 10.1016/j.wavemoti.2016.05.006. |
[3] |
V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp.
doi: 10.1088/1361-6420/aac21e. |
[4] |
A.-S. Bonnet-Bendhia and A. Tillequin,
A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.
doi: 10.1142/S0218396X01001005. |
[5] |
L. Borcea, F. Cakoni and S. Meng,
A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.
doi: 10.1016/j.jcp.2019.04.072. |
[6] |
L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp.
doi: 10.1088/1361-6420/ab2c9b. |
[7] |
L. Borcea and D.-L. Nguyen,
Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.
doi: 10.3934/ipi.2016027. |
[8] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp.
doi: 10.1088/0266-5611/24/1/015018. |
[9] |
L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp.
doi: 10.1088/0266-5611/27/5/055001. |
[10] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp.
doi: 10.1088/0266-5611/29/2/025017. |
[11] |
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp.
doi: 10.1088/0266-5611/30/9/095004. |
[12] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp.
doi: 10.1088/0266-5611/28/10/105011. |
[13] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023.
doi: 10.1088/1742-6596/135/1/012023. |
[14] |
F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006. |
[15] |
A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127.
doi: 10.1142/9789812773197_0013. |
[16] |
D. Colton and A. Kirsch,
A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[17] |
D. Colton, M. Piana and R. Potthast,
A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[18] |
P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp.
doi: 10.1088/0266-5611/32/5/055001. |
[19] |
P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp.
doi: 10.1088/1361-6420/ab0cdc. |
[20] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.
doi: 10.1137/130924238. |
[21] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp.
doi: 10.1088/0266-5611/32/12/125011. |
[22] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.
doi: 10.1137/17M1159051. |
show all references
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
V. Baronian, L. Bourgeois and A. Recoquillay,
Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.
doi: 10.1016/j.wavemoti.2016.05.006. |
[3] |
V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp.
doi: 10.1088/1361-6420/aac21e. |
[4] |
A.-S. Bonnet-Bendhia and A. Tillequin,
A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.
doi: 10.1142/S0218396X01001005. |
[5] |
L. Borcea, F. Cakoni and S. Meng,
A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.
doi: 10.1016/j.jcp.2019.04.072. |
[6] |
L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp.
doi: 10.1088/1361-6420/ab2c9b. |
[7] |
L. Borcea and D.-L. Nguyen,
Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.
doi: 10.3934/ipi.2016027. |
[8] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp.
doi: 10.1088/0266-5611/24/1/015018. |
[9] |
L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp.
doi: 10.1088/0266-5611/27/5/055001. |
[10] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp.
doi: 10.1088/0266-5611/29/2/025017. |
[11] |
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp.
doi: 10.1088/0266-5611/30/9/095004. |
[12] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp.
doi: 10.1088/0266-5611/28/10/105011. |
[13] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023.
doi: 10.1088/1742-6596/135/1/012023. |
[14] |
F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006. |
[15] |
A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127.
doi: 10.1142/9789812773197_0013. |
[16] |
D. Colton and A. Kirsch,
A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[17] |
D. Colton, M. Piana and R. Potthast,
A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[18] |
P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp.
doi: 10.1088/0266-5611/32/5/055001. |
[19] |
P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp.
doi: 10.1088/1361-6420/ab0cdc. |
[20] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.
doi: 10.1137/130924238. |
[21] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp.
doi: 10.1088/0266-5611/32/12/125011. |
[22] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.
doi: 10.1137/17M1159051. |















[1] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[2] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[5] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[6] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[7] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[8] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[9] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[10] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[11] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[12] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[13] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[14] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[15] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[16] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[17] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[18] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[19] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[20] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]