
-
Previous Article
A new variational approach based on level-set function for convex hull problem with outliers
- IPI Home
- This Issue
-
Next Article
Inverse scattering and stability for the biharmonic operator
Imaging junctions of waveguides
1. | Laboratoire POEMS, ENSTA Paris, 828 Boulevard des Maréchaux, 91120 Palaiseau, France |
2. | Université Paris-Saclay, CEA, LIST, F-91120 Palaiseau, France |
In this paper we address the identification of defects by the Linear Sampling Method in half-waveguides which are related to each other by junctions. Firstly a waveguide which is characterized by an abrupt change of properties is considered, secondly the more difficult case of several half-waveguides related to each other by a junction of complex geometry. Our approach is illustrated by some two-dimensional numerical experiments.
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
V. Baronian, L. Bourgeois and A. Recoquillay,
Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.
doi: 10.1016/j.wavemoti.2016.05.006. |
[3] |
V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp.
doi: 10.1088/1361-6420/aac21e. |
[4] |
A.-S. Bonnet-Bendhia and A. Tillequin,
A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.
doi: 10.1142/S0218396X01001005. |
[5] |
L. Borcea, F. Cakoni and S. Meng,
A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.
doi: 10.1016/j.jcp.2019.04.072. |
[6] |
L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp.
doi: 10.1088/1361-6420/ab2c9b. |
[7] |
L. Borcea and D.-L. Nguyen,
Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.
doi: 10.3934/ipi.2016027. |
[8] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp.
doi: 10.1088/0266-5611/24/1/015018. |
[9] |
L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp.
doi: 10.1088/0266-5611/27/5/055001. |
[10] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp.
doi: 10.1088/0266-5611/29/2/025017. |
[11] |
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp.
doi: 10.1088/0266-5611/30/9/095004. |
[12] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp.
doi: 10.1088/0266-5611/28/10/105011. |
[13] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023.
doi: 10.1088/1742-6596/135/1/012023. |
[14] |
F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006. |
[15] |
A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127.
doi: 10.1142/9789812773197_0013. |
[16] |
D. Colton and A. Kirsch,
A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[17] |
D. Colton, M. Piana and R. Potthast,
A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[18] |
P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp.
doi: 10.1088/0266-5611/32/5/055001. |
[19] |
P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp.
doi: 10.1088/1361-6420/ab0cdc. |
[20] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.
doi: 10.1137/130924238. |
[21] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp.
doi: 10.1088/0266-5611/32/12/125011. |
[22] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.
doi: 10.1137/17M1159051. |
show all references
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
V. Baronian, L. Bourgeois and A. Recoquillay,
Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.
doi: 10.1016/j.wavemoti.2016.05.006. |
[3] |
V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp.
doi: 10.1088/1361-6420/aac21e. |
[4] |
A.-S. Bonnet-Bendhia and A. Tillequin,
A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.
doi: 10.1142/S0218396X01001005. |
[5] |
L. Borcea, F. Cakoni and S. Meng,
A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.
doi: 10.1016/j.jcp.2019.04.072. |
[6] |
L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp.
doi: 10.1088/1361-6420/ab2c9b. |
[7] |
L. Borcea and D.-L. Nguyen,
Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.
doi: 10.3934/ipi.2016027. |
[8] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp.
doi: 10.1088/0266-5611/24/1/015018. |
[9] |
L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp.
doi: 10.1088/0266-5611/27/5/055001. |
[10] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp.
doi: 10.1088/0266-5611/29/2/025017. |
[11] |
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp.
doi: 10.1088/0266-5611/30/9/095004. |
[12] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp.
doi: 10.1088/0266-5611/28/10/105011. |
[13] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023.
doi: 10.1088/1742-6596/135/1/012023. |
[14] |
F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006. |
[15] |
A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127.
doi: 10.1142/9789812773197_0013. |
[16] |
D. Colton and A. Kirsch,
A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003. |
[17] |
D. Colton, M. Piana and R. Potthast,
A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005. |
[18] |
P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp.
doi: 10.1088/0266-5611/32/5/055001. |
[19] |
P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp.
doi: 10.1088/1361-6420/ab0cdc. |
[20] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.
doi: 10.1137/130924238. |
[21] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp.
doi: 10.1088/0266-5611/32/12/125011. |
[22] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos,
Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.
doi: 10.1137/17M1159051. |















[1] |
Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036 |
[2] |
Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043 |
[3] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[4] |
Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012 |
[5] |
Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001 |
[6] |
Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709 |
[7] |
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 |
[8] |
Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009 |
[9] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems and Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026 |
[10] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[11] |
Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745 |
[12] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[13] |
Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009 |
[14] |
Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064 |
[15] |
Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139 |
[16] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054 |
[17] |
Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158 |
[18] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[19] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[20] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]