In this paper we address the identification of defects by the Linear Sampling Method in half-waveguides which are related to each other by junctions. Firstly a waveguide which is characterized by an abrupt change of properties is considered, secondly the more difficult case of several half-waveguides related to each other by a junction of complex geometry. Our approach is illustrated by some two-dimensional numerical experiments.
| Citation: |
Figure 6.
Back-scattering for obstacle 1. Top left:
Figure 7.
Back-scattering for obstacle 2. Top left:
Figure 8.
Back-scattering for obstacle 4. Top left:
Figure 10.
Back-scattering for obstacle 1,
Figure 11.
Back-scattering for obstacle 1,
Figure 12.
Back-scattering for obstacle 2,
Figure 13.
Back-scattering for obstacle 2,
Figure 14.
Data on a single half-waveguide. Top left: exact data on section
Figure 16.
Top: data on two half-waveguides. Left: exact data on sections
| [1] |
L. Audibert, A. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625.
|
| [2] |
V. Baronian, L. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.
doi: 10.1016/j.wavemoti.2016.05.006.
|
| [3] |
V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp.
doi: 10.1088/1361-6420/aac21e.
|
| [4] |
A.-S. Bonnet-Bendhia and A. Tillequin, A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.
doi: 10.1142/S0218396X01001005.
|
| [5] |
L. Borcea, F. Cakoni and S. Meng, A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.
doi: 10.1016/j.jcp.2019.04.072.
|
| [6] |
L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp.
doi: 10.1088/1361-6420/ab2c9b.
|
| [7] |
L. Borcea and D.-L. Nguyen, Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.
doi: 10.3934/ipi.2016027.
|
| [8] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp.
doi: 10.1088/0266-5611/24/1/015018.
|
| [9] |
L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp.
doi: 10.1088/0266-5611/27/5/055001.
|
| [10] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp.
doi: 10.1088/0266-5611/29/2/025017.
|
| [11] |
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp.
doi: 10.1088/0266-5611/30/9/095004.
|
| [12] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp.
doi: 10.1088/0266-5611/28/10/105011.
|
| [13] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023.
doi: 10.1088/1742-6596/135/1/012023.
|
| [14] |
F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.
|
| [15] |
A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127.
doi: 10.1142/9789812773197_0013.
|
| [16] |
D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003.
|
| [17] |
D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.
doi: 10.1088/0266-5611/13/6/005.
|
| [18] |
P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp.
doi: 10.1088/0266-5611/32/5/055001.
|
| [19] |
P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp.
doi: 10.1088/1361-6420/ab0cdc.
|
| [20] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.
doi: 10.1137/130924238.
|
| [21] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp.
doi: 10.1088/0266-5611/32/12/125011.
|
| [22] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.
doi: 10.1137/17M1159051.
|