Article Contents
Article Contents

# Imaging junctions of waveguides

• * Corresponding author: Laurent Bourgeois
• In this paper we address the identification of defects by the Linear Sampling Method in half-waveguides which are related to each other by junctions. Firstly a waveguide which is characterized by an abrupt change of properties is considered, secondly the more difficult case of several half-waveguides related to each other by a junction of complex geometry. Our approach is illustrated by some two-dimensional numerical experiments.

Mathematics Subject Classification: Primary: 35J05, 35R25, 35R30, 35R35, 47G10.

 Citation:

• Figure 1.  Waveguide with an abrupt change of properties

Figure 2.  Obstacles within the waveguide

Figure 15.  Exact data on the section $\Sigma^0$. Left: $R^0 = 1.1$. Right: $R^0 = 3$

Figure 3.  A waveguide with a transition zone (the domain $B_R$ is hatched)

Figure 4.  A junction of three half-waveguides (the domain $B$ is hatched)

Figure 5.  Full-scattering, $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 60$ ($\tilde{P} = 20$). Top left: obstacle 3 and exact data. Top right: obstacle 3 and noisy data. Bottom left: obstacle 4 and exact data. Bottom right: obstacle 4 and noisy data

Figure 6.  Back-scattering for obstacle 1. Top left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 20$ ($\tilde{P} = 7$), exact data. Top right: $\kappa = 40$ and $\tilde{\kappa} = 20$, noisy data. Middle left: $\kappa = \tilde{\kappa} = 40$ ($P = \tilde{P} = 13$), exact data. Middle right: $\kappa = \tilde{\kappa} = 40$, noisy data. Bottom left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 60$ ($\tilde{P} = 20$), exact data. Bottom right: $\kappa = 40$ and $\tilde{\kappa} = 60$, noisy data

Figure 7.  Back-scattering for obstacle 2. Top left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 20$ ($P = 7$), exact data. Top right: $\kappa = 40$ and $\tilde{\kappa} = 20$, noisy data. Middle left: $\kappa = \tilde{\kappa} = 40$ ($P = \tilde{P} = 13$), exact data. Middle right: $\kappa = \tilde{\kappa} = 40$, noisy data. Bottom left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 60$ ($\tilde{P} = 20$), exact data. Bottom right: $\kappa = 40$ and $\tilde{\kappa} = 60$, noisy data

Figure 8.  Back-scattering for obstacle 4. Top left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 20$ ($\tilde{P} = 7$), exact data. Top right: $\kappa = 40$ and $\tilde{\kappa} = 20$, noisy data. Middle left: $\kappa = \tilde{\kappa} = 40$ ($P = \tilde{P} = 13$), exact data. Middle right: $\kappa = \tilde{\kappa} = 40$, noisy data. Bottom left: $\kappa = 40$ ($P = 13$) and $\tilde{\kappa} = 60$ ($\tilde{P} = 20$), exact data. Bottom right: $\kappa = 40$ and $\tilde{\kappa} = 60$, noisy data

Figure 9.  Full-scattering, obstacle 3, $\kappa = \tilde{\kappa} = 40$, $h = 0.65$ ($P = 9$) and $\tilde{h} = 1$ ($\tilde{P} = 13$). Left: exact data. Right: noisy data

Figure 10.  Back-scattering for obstacle 1, $\kappa = \tilde{\kappa} = 30$ and $h>\tilde{h}$. Top left: $h = 1$ ($P = 10$) and $\tilde{h} = 0.5$ ($\tilde{P} = 5$), exact data. Top right: $h = 1$ and $\tilde{h} = 0.5$, noisy data. Bottom left: $h = 1$ ($P = 10$) and $\tilde{h} = 0.75$ ($\tilde{P} = 8$), exact data. Bottom right: $h = 1$ and $\tilde{h} = 0.75$, noisy data

Figure 11.  Back-scattering for obstacle 1, $\kappa = \tilde{\kappa} = 30$ and $h<\tilde{h}$. Top left: $h = 0.5$ ($P = 5$) and $\tilde{h} = 1$ ($\tilde{P} = 10$), exact data. Top right: $h = 0.5$ and $\tilde{h} = 1$, noisy data. Bottom left: $h = 0.75$ ($P = 8$) and $\tilde{h} = 1$ ($\tilde{P} = 10$), exact data. Bottom right: $h = 0.75$ and $\tilde{h} = 1$, noisy data

Figure 12.  Back-scattering for obstacle 2, $\kappa = \tilde{\kappa} = 30$ and $h>\tilde{h}$. Top left: $h = 1$ ($P = 10$) and $\tilde{h} = 0.5$ ($\tilde{P} = 5$), exact data. Top right: $h = 1$ and $\tilde{h} = 0.5$, noisy data. Bottom left: $h = 1$ ($P = 10$) and $\tilde{h} = 0.75$ ($\tilde{P} = 8$), exact data. Bottom right: $h = 1$ and $\tilde{h} = 0.75$, noisy data

Figure 13.  Back-scattering for obstacle 2, $\kappa = \tilde{\kappa} = 30$ and $h<\tilde{h}$. Top left: $h = 0.5$ ($P = 5$) and $\tilde{h} = 1$ ($\tilde{P} = 10$), exact data. Top right: $h = 0.5$ and $\tilde{h} = 1$, noisy data. Bottom left: $h = 0.75$ ($P = 8$) and $\tilde{h} = 1$ ($\tilde{P} = 10$), exact data. Bottom right: $h = 0.75$ and $\tilde{h} = 1$, noisy data

Figure 14.  Data on a single half-waveguide. Top left: exact data on section $\Sigma^0$. Top right: noisy data on section $\Sigma^0$. Middle left: exact data on section $\Sigma^1$. Middle right: noisy data on section $\Sigma^1$. Bottom left: exact data on section $\Sigma^2$. Bottom right: noisy data on section $\Sigma^2$

Figure 16.  Top: data on two half-waveguides. Left: exact data on sections $\Sigma^0$ and $\Sigma^1$. Right: noisy data on sections $\Sigma^0$ and $\Sigma^1$. Bottom: data on three half-waveguides. Left: exact data on sections $\Sigma^0$, $\Sigma^1$ and $\Sigma^2$. Right: noisy data on sections $\Sigma^0$, $\Sigma^1$ and $\Sigma^2$

•  [1] L. Audibert, A. Girard and H. Haddar, Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.  doi: 10.3934/ipi.2015.9.625. [2] V. Baronian, L. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain, Wave Motion, 66 (2016), 68-87.  doi: 10.1016/j.wavemoti.2016.05.006. [3] V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34 pp. doi: 10.1088/1361-6420/aac21e. [4] A.-S. Bonnet-Bendhia and A. Tillequin, A generalized mode matching method for scattering problems with unbounded obstacles, Journal of Computational Acoustics, 9 (2001), 1611-1631.  doi: 10.1142/S0218396X01001005. [5] L. Borcea, F. Cakoni and S. Meng, A direct approach to imaging in a waveguide with perturbed geometry, J. Comput. Phys., 392 (2019), 556-577.  doi: 10.1016/j.jcp.2019.04.072. [6] L. Borcea and S. Meng, Factorization method versus migration imaging in a waveguide, Inverse Problems, 35 (2019), 0124006, 33 pp. doi: 10.1088/1361-6420/ab2c9b. [7] L. Borcea and D.-L. Nguyen, Imaging with electromagnetic waves in terminating waveguides, Inverse Probl. Imaging, 10 (2016), 915-941.  doi: 10.3934/ipi.2016027. [8] L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation, Inverse Problems, 24 (2008), 015018, 20 pp. doi: 10.1088/0266-5611/24/1/015018. [9] L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27 pp. doi: 10.1088/0266-5611/27/5/055001. [10] L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19 pp. doi: 10.1088/0266-5611/29/2/025017. [11] L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004, 31 pp. doi: 10.1088/0266-5611/30/9/095004. [12] L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18 pp. doi: 10.1088/0266-5611/28/10/105011. [13] L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023. doi: 10.1088/1742-6596/135/1/012023. [14] F. Cakoni and D. Colton, Qualitative Methods In Inverse Scattering Theory, Springer-Verlag, Berlin, 2006. [15] A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering, World Sci. Publ., Hackensack, NJ, (2006), 120–127. doi: 10.1142/9789812773197_0013. [16] D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003. [17] D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.  doi: 10.1088/0266-5611/13/6/005. [18] P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain, Inverse Problems, 32 (2016), 055001, 26 pp. doi: 10.1088/0266-5611/32/5/055001. [19] P. Monk, V. Selgas and F. Yang, Near-field linear sampling method for an inverse problem in an electromagnetic waveguide, Inverse Problems, 35 (2019), 065001, 27 pp. doi: 10.1088/1361-6420/ab0cdc. [20] C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides, SIAM J. Imaging Sci., 6 (2013), 2714-2739.  doi: 10.1137/130924238. [21] C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Partial-aperture array imaging in acoustic waveguides, Inverse Problems, 32 (2016), 125011, 31pp. doi: 10.1088/0266-5611/32/12/125011. [22] C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Imaging extended reflectors in a terminating waveguide, SIAM J. Imaging Sci., 11 (2018), 1680-1716.  doi: 10.1137/17M1159051.

Figures(16)