[1]
|
A. Agarwal, S. Negahban and M. J. Wainwright, Fast global convergence rates of gradient methods for high-dimensional statistical recovery, Ann. Statist., 40 (2012), 2452–2482.
doi: 10.1214/12-AOS1032.
|
[2]
|
M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199.
|
[3]
|
D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham and R. G. Baraniuk, Distributed compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.
|
[4]
|
J. A. Bazerque and G. B. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity, IEEE Transactions on Signal Processing, 58 (2010), 1847-1862.
doi: 10.1109/TSP.2009.2038417.
|
[5]
|
J. D. Blanchard, M. Cermak, D. Hanle and Y. Jing, Greedy algorithms for joint sparse recovery, IEEE Transactions on Signal Processing, 62 (2014), 1694-1704.
doi: 10.1109/TSP.2014.2301980.
|
[6]
|
J. D. Blanchard, J. Tanner and K. Wei, CGIHT: conjugate gradient iterative hard thresholding for compressed sensing and matrix completion, Information and Inference: A Journal of the IMA, 4 (2015), 289-327.
doi: 10.1093/imaiai/iav011.
|
[7]
|
T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, 27 (2009), 265-274.
doi: 10.1016/j.acha.2009.04.002.
|
[8]
|
T. Blumensath and M. E. Davies, Normalized iterative hard thresholding: Guaranteed stability and performance, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 298-309.
doi: 10.1109/JSTSP.2010.2042411.
|
[9]
|
R. Burden and J. Faires, Numerical Analysis, Cengage Learning, 2004.
|
[10]
|
J. Chen and X. Huo, Theoretical results on sparse representations of multiple-measurement vectors, IEEE Transactions on Signal Processing, 54 (2006), 4634-4643.
doi: 10.1109/TSP.2006.881263.
|
[11]
|
S. F. Cotter, B. D. Rao, K. Engan and K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Transactions on Signal Processing, 53 (2005), 2477-2488.
doi: 10.1109/TSP.2005.849172.
|
[12]
|
W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Transactions on Information Theory, 55 (2009), 2230-2249.
doi: 10.1109/TIT.2009.2016006.
|
[13]
|
M. E. Davies and Y. C. Eldar, Rank awareness in joint sparse recovery, IEEE Transactions on Information Theory, 58 (2012), 1135-1146.
doi: 10.1109/TIT.2011.2173722.
|
[14]
|
D. L. Donoho, Unconditional bases are optimal bases for data compression and for statistical estimation, Applied and Computational Harmonic Analysis, 1 (1993), 100-115.
doi: 10.1006/acha.1993.1008.
|
[15]
|
N. Durgin, C. Huang, R. Grotheer, S. Li, A. Ma, D. Needell and J. Qin, Fast hyperspectral diffuse optical imaging method with joint sparsity, in 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2019.
doi: 10.1109/EMBC.2019.8857069.
|
[16]
|
M. Elad, Sparse and Redundant Representations From Theory to Applications in Signal and Image Processing, Springer, 2010.
doi: 10.1007/978-1-4419-7011-4.
|
[17]
|
P. Feng and Y. Bresler, Spectrum-blind minimum-rate sampling and reconstruction of multiband signals, in Acoustics, Speech and Signal Processing (ICASSP), 1996 IEEE International Conference on, vol. 3, IEEE, 1996, 1688–1691.
doi: 10.1109/ICASSP.1996.544131.
|
[18]
|
S. Foucart, Hard thresholding pursuit: an algorithm for compressive sensing, SIAM Journal on Numerical Analysis, 49 (2011), 2543-2563.
doi: 10.1137/100806278.
|
[19]
|
S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, vol. 1, Birkhäuser/Springer, New York, 2013.
doi: 10.1007/978-0-8176-4948-7.
|
[20]
|
R. Giryes, S. Nam, M. Elad, R. Gribonval and M. E. Davies, Greedy-like algorithms for the cosparse analysis model, Linear Algebra and its Applications, 441 (2014), 22-60.
doi: 10.1016/j.laa.2013.03.004.
|
[21]
|
Z. He, A. Cichocki, R. Zdunek and J. Cao, CG-M-FOCUSS and its application to distributed compressed sensing, in International Symposium on Neural Networks, Springer, 2008,237–245.
doi: 10.1007/978-3-540-87732-5_27.
|
[22]
|
Z. Jian, F. Yuli, Z. Qiheng and L. Haifeng, Split bregman algorithms for multiple measurement vector problem, Multidim Syst Sign Process.
|
[23]
|
J. M. Kim, O. K. Lee and J. C. Ye, Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing, IEEE Transactions on Information Theory, 58 (2012), 278-301.
doi: 10.1109/TIT.2011.2171529.
|
[24]
|
K. Lee, Y. Bresler and M. Junge, Subspace methods for joint sparse recovery, IEEE Transactions on Information Theory, 58 (2012), 3613-3641.
doi: 10.1109/TIT.2012.2189196.
|
[25]
|
S. Li, D. Yang, G. Tang and M. B. Wakin, Atomic norm minimization for modal analysis from random and compressed samples, IEEE Transactions on Signal Processing, 66 (2018), 1817-1831.
doi: 10.1109/TSP.2018.2793907.
|
[26]
|
H. Lu, X. Long and J. Lv, A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011,461–469.
|
[27]
|
J. R. Magnus, On the concept of matrix derivative, Journal of Multivariate Analysis, 101 (2010), 2200-2206.
doi: 10.1016/j.jmva.2010.05.005.
|
[28]
|
A. Majumdar and R. Ward, Rank awareness in group-sparse recovery of multi-echo MR images, Sensors, 13 (2013), 3902-3921.
doi: 10.3390/s130303902.
|
[29]
|
A. Majumdar and R. K. Ward, Joint reconstruction of multiecho mr images using correlated sparsity, Magnetic Resonance Imaging, 29 (2011), 899-906.
doi: 10.1016/j.mri.2011.03.008.
|
[30]
|
A. Majumdar and R. K. Ward, Face recognition from video: An MMV recovery approach, in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, IEEE, 2012, 2221–2224.
doi: 10.1109/ICASSP.2012.6288355.
|
[31]
|
M. Mishali and Y. C. Eldar, Reduce and boost: Recovering arbitrary sets of jointly sparse vectors, IEEE Transactions on Signal Processing, 56 (2008), 4692-4702.
doi: 10.1109/TSP.2008.927802.
|
[32]
|
D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis, 26 (2009), 301-321.
doi: 10.1016/j.acha.2008.07.002.
|
[33]
|
D. Needell and R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 310-316.
doi: 10.1109/JSTSP.2010.2042412.
|
[34]
|
D. Needell and R. Ward, Batched stochastic gradient descent with weighted sampling, in International Conference Approximation Theory, Springer, 2016,279–306.
doi: 10.1007/978-3-319-59912-0_14.
|
[35]
|
N. Nguyen, D. Needell and T. Woolf, Linear convergence of stochastic iterative greedy algorithms with sparse constraints, IEEE Transactions on Information Theory, 63 (2017), 6869–6895.
doi: 10.1109/TIT.2017.2749330.
|
[36]
|
N. Nguyen, S. Chin and T. Tran, A Unified Iterative Greedy Algorithm for Sparsity-Constrained Optimization, 2012.
|
[37]
|
Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, in Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, IEEE, 1993, 40–44.
doi: 10.1109/ACSSC.1993.342465.
|
[38]
|
R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, 34 (1986), 276-280.
doi: 10.1109/TAP.1986.1143830.
|
[39]
|
J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Transactions on Information theory, 50 (2004), 2231-2242.
doi: 10.1109/TIT.2004.834793.
|
[40]
|
J. A. Tropp, A. C. Gilbert and M. J. Strauss, Algorithms for simultaneous sparse approximation. Part Ⅰ: Greedy pursuit, Signal Processing, 86 (2006), 572-588.
doi: 10.1016/j.sigpro.2005.05.030.
|
[41]
|
X.-T. Yuan, P. Li and T. Zhang, Gradient hard thresholding pursuit for sparsity-constrained optimization, in International Conference on Machine Learning, 2014,127–135.
|
[42]
|
T. Zhang, Sparse recovery with orthogonal matching pursuit under RIP, IEEE Transactions on Information Theory, 57 (2011), 6215-6221.
doi: 10.1109/TIT.2011.2162263.
|