[1]
|
E. Amaldi and V. Kann, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoretical Computer Science, 209 (1998), 237-260.
doi: 10.1016/S0304-3975(97)00115-1.
|
[2]
|
T. Bouwmans and E. H. Zahzah, Robust pca via principal component pursuit: A review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 122 (2014), 22-34.
|
[3]
|
H. Cai, J.-F. Cai and K. Wei, Accelerated alternating projections for robust principal component analysis, The Journal of Machine Learning Research, 20 (2019), 685-717.
|
[4]
|
E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM (JACM), 58 (2011), 1-37.
doi: 10.1145/1970392.1970395.
|
[5]
|
R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Processing Letters, 14 (2007), 707-710.
doi: 10.1109/LSP.2007.898300.
|
[6]
|
J. P. Cunningham and Z. Ghahramani, Linear dimensionality reduction: Survey, insights, and generalizations, The Journal of Machine Learning Research, 16 (2015), 2859-2900.
|
[7]
|
J. F. P. Da Costa, H. Alonso and L. Roque, A weighted principal component analysis and its application to gene expression data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8 (2009), 246-252.
|
[8]
|
F. De la Torre and M. J. Black, Robust principal component analysis for computer vision, in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, IEEE, 2001, 362-369.
|
[9]
|
E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE transactions on pattern analysis and machine intelligence, 35 (2013), 2765-2781.
doi: 10.1109/TPAMI.2013.57.
|
[10]
|
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American statistical Association, 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.
|
[11]
|
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge university press, 2013.
|
[12]
|
X.-L. Huang, L. Shi and M. Yan, Nonconvex sorted $\ell_1$ minimization for sparse approximation, Journal of the Operations Research Society of China, 3 (2015), 207-229.
doi: 10.1007/s40305-014-0069-4.
|
[13]
|
G. Li and T. K. Pong, Global convergence of splitting methods for nonconvex composite optimization, SIAM Journal on Optimization, 25 (2015), 2434-2460.
doi: 10.1137/140998135.
|
[14]
|
H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, in Advances in Neural Information Processing Systems, 2015, 379-387.
|
[15]
|
Z. Lin, M. Chen and Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. 2010, arXiv preprint arXiv: 1009.5055, (2010), 663-670.
|
[16]
|
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu and Y. Ma, Robust recovery of subspace structures by low-rank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 171-184.
|
[17]
|
X. Liu, Z. Wen and Y. Zhang, An efficient Gauss-Newton algorithm for symmetric low-rank product matrix approximations, SIAM Journal on Optimization, 25 (2015), 1571-1608.
doi: 10.1137/140971464.
|
[18]
|
Y. Lou and M. Yan, Fast l1-l2 minimization via a proximal operator, Journal of Scientific Computing, 74 (2018), 767-785.
doi: 10.1007/s10915-017-0463-2.
|
[19]
|
N. Sha, M. Yan and Y. Lin, Efficient seismic denoising techniques using robust principal component analysis, in SEG Technical Program Expanded Abstracts 2019, Society of Exploration Geophysicists, 2019, 2543-2547.
|
[20]
|
Y. Shen, H. Xu and X. Liu, An alternating minimization method for robust principal component analysis, Optimization Methods and Software, 34 (2019), 1251-1276.
doi: 10.1080/10556788.2018.1496086.
|
[21]
|
M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 57-81.
doi: 10.1137/100781894.
|
[22]
|
L. N. Trefethen and D. Bau â…¢, Numerical linear algebra, vol. 50, SIAM, 1997.
|
[23]
|
F. Wen, R. Ying, P. Liu and T.-K. Truong, Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm, IEEE Transactions on Signal Processing, 67 (2019), 5402-5416.
doi: 10.1109/TSP.2019.2940121.
|
[24]
|
Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Mathematical Programming Computation, 4 (2012), 333-361.
doi: 10.1007/s12532-012-0044-1.
|
[25]
|
J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, in Advances in Neural Information Processing Systems, 2009, 2080-2088.
|
[26]
|
X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, preprint, 12 (2009).
|
[27]
|
C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38 (2010), 894-942.
doi: 10.1214/09-AOS729.
|