[1]
|
G. Aubert and J.-F. Aujol, A variational approach to remove multiplicative noise, SIAM Journal on Applied Mathematics, 68 (2008), 925-946.
doi: 10.1137/060671814.
|
[2]
|
A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing, 18 (2009), 2419-2434.
doi: 10.1109/TIP.2009.2028250.
|
[3]
|
A. C. Bovik, T. S. Huang and D. C. Munson, A generalization of median filtering using linear combinations of order statistics, IEEE Trans Acoustics Speech Signal Processing, 31 (1983), 1342-1350.
|
[4]
|
A. C. Bovik, T. S. Huang and D. C. Munson, The effect of median filtering on edge estimation and detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 9 (1987), 181-194.
doi: 10.1109/TPAMI.1987.4767894.
|
[5]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM Journal on Imaging Sciences, 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[6]
|
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
|
[7]
|
A. Chambolle, An algorithm for mean curvature motion, Interfaces and Free Boundaries, 6 (2004), 195-218.
doi: 10.4171/IFB/97.
|
[8]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[9]
|
C. Chaux, J.-C. Pesquet and N. Pustelnik, Nested iterative algorithms for convex constrained image recovery problems, SIAM Journal on Imaging Sciences, 2 (2009), 730-762.
doi: 10.1137/080727749.
|
[10]
|
Y. Chen and M. Rao, Minimization problems and associated flows related to weighted p energy and total variation, SIAM Journal on mathematical Analysis, 34 (2003), 1084-1104.
doi: 10.1137/S0036141002404577.
|
[11]
|
Y. Chen and T. Wunderli, Adaptive total variation for image restoration in BV space, Journal of Mathematical Analysis and Applications, 272 (2002), 117-137.
doi: 10.1016/S0022-247X(02)00141-5.
|
[12]
|
P. L. Combettes and J.-C. Pesquet, A douglas-rachford splitting approach to nonsmooth convex variational signal recovery, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 564-574.
doi: 10.1109/JSTSP.2007.910264.
|
[13]
|
A. Dauwe, B. Goossens, H. Luong and W. Philips, A fast non-local image denoising algorithm, Electronic Imaging, 6812 (2008), 681210.
doi: 10.1117/12.765505.
|
[14]
|
C.-A. Deledalle, L. Denis, S. Tabti and F. Tupin, MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction?, IEEE Transactions on Image Processing, 26 (2017), 4389-4303.
doi: 10.1109/TIP.2017.2713946.
|
[15]
|
G. Dong, Z. Guo and B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal, Abstract and Applied Analysis, 2013 (2013), 1-21.
doi: 10.1155/2013/912373.
|
[16]
|
Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM Journal on Imaging Sciences, 6 (2013), 1598-1625.
doi: 10.1137/120870621.
|
[17]
|
S. Durand, J. Fadili and M. Nikolova, Multiplicative noise removal using L1 fidelity on frame coefficients, Journal of Mathematical Imaging and Vision, 36 (2010), 201-226.
doi: 10.1007/s10851-009-0180-z.
|
[18]
|
E. Esser, X. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, Siam Journal on Imaging Sciences, 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[19]
|
K. Florian, B. Kristian, P. Thomas and S. Rudolf, Second order total generalized variation (TGV) for MRI, Magnetic Resonance in Medicine, 65 (2011), 480-491.
doi: 10.1002/mrm.22595.
|
[20]
|
E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, Birkhäuser Verlag, Basel, 80 1984, 7-26.
doi: 10.1007/978-1-4684-9486-0.
|
[21]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[22]
|
H. Na, M. Kang, M. Jung and M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Problems and Imaging, 13 (2019), 117-147.
doi: 10.3934/ipi.2019007.
|
[23]
|
P. Kornprobst, R. Deriche and G. Aubert, Image sequence analysis via partial differential equations, Journal of Mathematical Imaging and Vision, 11 (1999), 5-26.
doi: 10.1023/A:1008318126505.
|
[24]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[25]
|
T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by poisson noise, Journal of Mathematical Imaging and Vision, 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
[26]
|
S. Parrilli, M. Poderico, C. V. Angelino and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Transactions on Geoscience and Remote Sensing, 50 (2012), 606-616.
doi: 10.1109/TGRS.2011.2161586.
|
[27]
|
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205.
|
[28]
|
T. Pock, D. Cremers, H. Bischof and A. Chambolle, An algorithm for minimizing the mumford-Shah functional, IEEE International Conference on Computer Vision, (2009), 1133-1140.
doi: 10.1109/ICCV.2009.5459348.
|
[29]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[30]
|
C. Poynton, Digital Video and HD: Algorithms and Interfaces, 2$^nd$ edition, Elsevier, USA, 2012.
doi: 10.1016/C2010-0-68987-5.
|
[31]
|
X. Shan, J. Sun and Z. Guo, Multiplicative noise removal based on the smooth diffusion equation, Journal of Mathematical Imaging and Vision, 61 (2019), 763-779.
doi: 10.1007/s10851-018-00870-z.
|
[32]
|
R. Soorajkumar, P. K. Kumar, D. Girish and J. Rajan, Fourth order PDE based ultrasound despeckling using ENI classification, IEEE International Conference on Signal Processing and Communications (SPCOM), (2016).
doi: 10.1109/SPCOM.2016.7746633.
|
[33]
|
D. M. Strong and T. F. Chan, Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing, Journal of Mathematical Imaging and Vision, (1996).
|
[34]
|
M. Tur, K. C. Chin and J. W. Goodman, When is speckle noise multiplicative?, Applied Optics, 21 (1982), 1157-1159.
doi: 10.1364/AO.21.001157.
|
[35]
|
L. Verdoliva, R. Gaetano, G. Ruello and G. Poggi, Optical-driven nonlocal SAR despeckling, IEEE Geoscience and Remote Sensing Letters, 12 (2015), 314-318.
doi: 10.1109/LGRS.2014.2337515.
|
[36]
|
Z. Wang, A. C. Bovik and H. R. Sheikh, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 53 (2015), 2765-2774.
|
[37]
|
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner Stuttgart, ECMI Series, Teubner, Stuttgart, 1998.
|
[38]
|
C. Wu and X.-C. Tai, Augmented Lagrangian method, dual Methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[39]
|
J.-H. Yang, X.-L. Zhao, T.-H. Ma, Y. Chen, T.-Z. Huang and M. Ding, Emote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, Journal of Computational and Applied Mathematics, 363 (2020), 124-144.
doi: 10.1016/j.cam.2019.06.004.
|
[40]
|
X.-L. Zhao, F. Wang and M. K. Ng, A new convex optimization model for multiplicative noise and blur removal, SIAM Journal on Imagingences, 7 (2014), 456-475.
doi: 10.1137/13092472X.
|
[41]
|
Y. Zhao, J. G. Liu, B. Zhang, W. Hong and Y.-R. Wu, Adaptive total variation regularization based SAR image despeckling and despeckling evaluation index, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 2765-2774.
doi: 10.1109/TGRS.2014.2364525.
|
[42]
|
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Transactions on Image Processing, 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185.
|