[1]
|
E. J Candes and T Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507.
|
[2]
|
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.
|
[3]
|
T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski and W. T. Freeman, Image restoration by matching gradient distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 683-694.
doi: 10.1109/TPAMI.2011.166.
|
[4]
|
P. L Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling and Simulation, 4 (2005), 1168-1200.
doi: 10.1137/050626090.
|
[5]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Transactions on image processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[6]
|
W. Dong, L. Zhang, G. Shi and X. Li, Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.
doi: 10.1109/TIP.2012.2235847.
|
[7]
|
D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.
|
[8]
|
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969.
|
[9]
|
M. El Gheche, J.-F. Aujol, Y. Berthoumieu and C.-A. Deledalle, Texture reconstruction guided by the histogram of a high-resolution patch, IEEE Trans. Image Process, 26 (2017), 549-560.
doi: 10.1109/TIP.2016.2627812.
|
[10]
|
W. Feller, An Introduction to Probability Theory and Its Applications Ⅱ, John Wiley & Sons, 1968.
|
[11]
|
A. L. Gibbs, Convergence in the wasserstein metric for markov chain monte carlo algorithms with applications to image restoration, Stochastic Models, 20 (2004), 473-492.
doi: 10.1081/STM-200033117.
|
[12]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[13]
|
R. C. Gonzalez, R. E Woods and S. L Eddins, Digital Image Processing Using MATLAB, Prentice Hall Press, 2007.
|
[14]
|
S. Harmeling, C. J. Schuler and H. C. Burger, Image denoising: Can plain neural networks compete with bm3d?, In IEEE Conference on Computer Vision and Pattern Recognition, (2012), 2392-2399.
|
[15]
|
R. He, X. Feng, W. Wang, X. Zhu and Ch unyu Yang, W-ldmm: A wasserstein driven low-dimensional manifold model for noisy image restoration, Neurocomputing, 371 (2020), 108-123.
doi: 10.1016/j.neucom.2019.08.088.
|
[16]
|
D. J. Heeger and J. R. Bergen, Pyramid-based texture analysis/synthesis, In International Conference on Image Processing, 1995. Proceedings, (1995), 229-238.
|
[17]
|
V. Jain and H. Sebastian Seung, Natural image denoising with convolutional networks, In International Conference on Neural Information Processing Systems, (2008), 769-776.
|
[18]
|
D. Krishnan and R. Fergus, Fast image deconvolution using hyper-laplacian priors, In International Conference on Neural Information Processing Systems, (2009), 1033-1041.
|
[19]
|
X. Lan, S. Roth, D. Huttenlocher and M. J Black, Efficient belief propagation with learned higher-order markov random fields, In European Conference on Computer Vision, pages 269-282. Springer, 2006.
doi: 10.1007/11744047_21.
|
[20]
|
S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer-Verlag London, Ltd., London, 2009.
|
[21]
|
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, Journal of Scientific Computing, 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2.
|
[22]
|
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Transactions on Image Processing, 17 (2008), 53-69.
doi: 10.1109/TIP.2007.911828.
|
[23]
|
S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
|
[24]
|
X. Mei, W. Dong, B. G. Hu and S. Lyu, Unihist: A unified framework for image restoration with marginal histogram constraints, In Computer Vision and Pattern Recognition, pages 3753-3761, 2015.
|
[25]
|
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2005), 460-489.
doi: 10.1137/040605412.
|
[26]
|
O. Pele and M. Werman, Fast and robust earth mover's distances, In IEEE International Conference on Computer Vision, (2010), 460-467.
doi: 10.1109/ICCV.2009.5459199.
|
[27]
|
G. Peyré, J. Fadili and J. Rabin, Wasserstein active contours, In IEEE International Conference on Image Processing, (2013), 2541-2544.
|
[28]
|
J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli, Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, 12 (2003), 1338-1351.
doi: 10.1109/TIP.2003.818640.
|
[29]
|
J. Rabin and G. Peyré, Wasserstein regularization of imaging problem, In IEEE International Conference on Image Processing, (2011), 1541-1544, .
doi: 10.1109/ICIP.2011.6115740.
|
[30]
|
A. Rajwade, A. Rangarajan and A. Banerjee, Image denoising using the higher order singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), 849-862.
|
[31]
|
W. H. Richardson, Bayesian-based iterative method of image restoration, Journal of the Optical Society of America, 62 (1972), 55-59.
doi: 10.1364/JOSA.62.000055.
|
[32]
|
Y. Romano, M. Protter and M. Elad, Single image interpolation via adaptive nonlocal sparsity-based modeling, IEEE Transactions on Image Processing, 23 (2014), 3085-3098.
doi: 10.1109/TIP.2014.2325774.
|
[33]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Eleventh International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science. Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[34]
|
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009.
|
[35]
|
U. Schmidt, Q. Gao and S. Roth, A generative perspective on mrfs in low-level vision, In Computer Vision and Pattern Recognition, 2010, pages 1751-1758.
doi: 10.1109/CVPR.2010.5539844.
|
[36]
|
O. Stanley, Z. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686.
|
[37]
|
D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), 165-187.
doi: 10.1088/0266-5611/19/6/059.
|
[38]
|
K. Suzuki, I. Horiba and N. Sugie, Efficient approximation of neural filters for removing quantum noise from images, IEEE Transactions on Signal Processing, 50 (2002), 1787-1799.
doi: 10.1109/TSP.2002.1011218.
|
[39]
|
P. Swoboda and C. Schnorr, Convex variational image restoration with histogram priors, SIAM Journal on Imaging Sciences, 6 (2013), 1719-1735.
doi: 10.1137/120897535.
|
[40]
|
G. Tartavel, G. Peyré and Y. Gousseau, Wasserstein loss for image synthesis and restoration, SIAM Journal on Imaging Sciences, 9 (2016), 1726-1755.
doi: 10.1137/16M1067494.
|
[41]
|
F. Thaler, K. Hammernik, C. Payer, M. Urschler and D. Stern, Sparse-view ct reconstruction using wasserstein gans, 2018, pages 75-82.
doi: 10.1007/978-3-030-00129-2_9.
|
[42]
|
M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Transactions on Medical Imaging, 17 (1998), 285-93.
doi: 10.1109/42.700740.
|
[43]
|
C. Villani, Optimal Transport: Old and New, volume 338, Springer-Verlag, Berlin, 2009
doi: 10.1007/978-3-540-71050-9.
|
[44]
|
Y. Weiss and W. T. Freeman, What makes a good model of natural images?, In 2007 IEEE Conference on Computer Vision and Pattern Recognition, (2007) pages 1-8.
doi: 10.1109/CVPR.2007.383092.
|
[45]
|
O. J. Woodford, C. Rother and V. Kolmogorov, A global perspective on map inference for low-level vision, In IEEE International Conference on Computer Vision, 2009, pages 2319-2326.
doi: 10.1109/ICCV.2009.5459434.
|
[46]
|
F. Wu, B. Wang, D. Cui and L. Li, Single image super-resolution based on wasserstein gans, Chinese Control Conference (CCC), 2018.
doi: 10.23919/ChiCC.2018.8484039.
|
[47]
|
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and G. Wang, Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018), 1348-1357.
doi: 10.1109/TMI.2018.2827462.
|
[48]
|
K. Zhang, W. Zuo, S. Gu and L. Zhang, Learning deep cnn denoiser prior for image restoration, 2017, pages 2808-2817.
doi: 10.1109/CVPR.2017.300.
|
[49]
|
W. Zuo, L. Zhang, C. Song, D. Zhang and H. Gao, Gradient histogram estimation and preservation for texture enhanced image denoising, IEEE Transactions on Image Processing, 23 (2014), 2459-2472.
doi: 10.1109/TIP.2014.2316423.
|