[1]
|
B. Begovic, V. Stankovic and L. Stankovic, Contrast enhancement and denoising of Poisson and Gaussian mixture noise for solar images, 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 2011, 185-188.
doi: 10.1109/ICIP.2011.6115829.
|
[2]
|
F. Benvenuto, A. L. Camera, C. Theys, A. Ferrari, H. Lantéri and M. Bertero, The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise, Inverse Problems, 24 (2008), 035016, 20pp.
doi: 10.1088/0266-5611/24/3/035016.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn., 3 (2011), 1-122.
doi: 10.1561/9781601984616.
|
[4]
|
L. Calatroni, C. Cao, J. D. L. Reyes, C. Schönlieb and T. Valkonen, Bilevel approaches for learning of variational imaging models, Variational Methods, 252-290, Radon Ser. Comput. Appl. Math., 18, De Gruyter, Berlin, 2017.
|
[5]
|
L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed Gaussian and salt-and-pepper noise removal, Inverse Problems, 35 (2019), 114001, 37pp.
doi: 10.1088/1361-6420/ab291a.
|
[6]
|
L. Calatroni, J. D. L. Reyes and C. Schönlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM Journal on Imaging Sciences, 10 (2017), 1196-1233.
doi: 10.1137/16M1101684.
|
[7]
|
A. Chakrabarti and T. E. Zickler, Image restoration with signal-dependent Camera noise, preprint, arXiv: 1204.2994.
|
[8]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.
|
[9]
|
H. Chang, P. Enfedaque and S. Marchesini, Blind ptychographic phase retrieval via convergent alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 12 (2019), 153-185.
doi: 10.1137/18M1188446.
|
[10]
|
C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[11]
|
E. Chouzenoux, A. Jezierska, J. Pesquet and H. Talbot, A convex approach for image restoration with exact poisson-gaussian likelihood, SIAM J. Imaging Sciences, 8 (2015), 2662-2682.
doi: 10.1137/15M1014395.
|
[12]
|
W. Deng, M. Lai, Z. Peng and W. Yin, Parallel multi-block ADMM with O (1/k) convergence, Journal of Scientific Computing, 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2.
|
[13]
|
Q. Ding and Y. Long and X. Zhang and J. A. Fessler, Statistical image reconstruction using mixed poisson-gaussian noise model for X-ray CT, preprint, arXiv: 1801.09533.
|
[14]
|
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[15]
|
A. Foi, M. Trimeche, V. Katkovnik and K. Egiazarian, Practical poissonian-gaussian noise modeling and fitting for single-image raw-data, IEEE Transactions on Image Processing, 17 (2008), 1737-1754.
doi: 10.1109/TIP.2008.2001399.
|
[16]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[17]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Française D'automatique, Informatique, Recherche Opérationnelle. Analyse Numérique, 9 (1975), 41-76.
doi: 10.1051/m2an/197509R200411.
|
[18]
|
D. Hajinezhad and Q. Shi, Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications, Journal of Global Optimization, 70 (2018), 261-288.
doi: 10.1007/s10898-017-0594-x.
|
[19]
|
M. Hong, Z. Luo and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM Journal on Optimization, 26 (2016), 337-364.
doi: 10.1137/140990309.
|
[20]
|
P. J. Huber, Robust Estimation of a Location Parameter, The Annals of Mathematical Statistics, 35 (1964), 73-101.
doi: 10.1214/aoms/1177703732.
|
[21]
|
A. Jezierska, C. Chaux, J. Pesquet and H. Talbot, An EM approach for Poisson-Gaussian noise modeling, 19th European Signal Processing Conference (EUSIPCO), Barcelona, Spain, 2011, 2244-2248.
|
[22]
|
A. Lanza, S. Morigi, F. Sgallari and Y. Wen, Image restoration with Poisson-Gaussian mixed noise, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2 (2014), 12-24.
doi: 10.1080/21681163.2013.811039.
|
[23]
|
T. Le, R. Chartrand and T. Asaki, A variational approach to reconstructing images corrupted by poisson noise, Journal of Mathematical Imaging and Vision, 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
[24]
|
J. Li, Z. Shen, R. Yin and X. Zhang, A reweighted $L^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise, Inverse Problems & Imaging, 9 (2015), 875-894.
doi: 10.3934/ipi.2015.9.875.
|
[25]
|
T. Lin, S. Ma and S. Zhang, On the global linear convergence of the admm with multiblock variables, SIAM Journal on Optimization, 25 (2015), 1478-1497.
doi: 10.1137/140971178.
|
[26]
|
Y. Lou and M. Yan, Fast L1-L2 minimization via a proximal operator, Journal of Scientific Computing, 74 (2018), 767-785.
doi: 10.1007/s10915-017-0463-2.
|
[27]
|
M. Mäkitalo and A. Foi, Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise, IEEE Transactions on Image Processing, 22 (2013), 91-103.
doi: 10.1109/TIP.2012.2202675.
|
[28]
|
Y. Marnissi, Y. Zheng and J. Pesquet, Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian noise, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, 3964-3968.
doi: 10.1109/ICASSP.2016.7472421.
|
[29]
|
J. Mei, Y. Dong, T. Huang and W. Yin, Cauchy noise removal by nonconvex ADMM with convergence guarantees, Journal of Scientific Computing, 74 (2018), 743-766.
doi: 10.1007/s10915-017-0460-5.
|
[30]
|
F. Murtagh, J.-L Starck and A. Bijaoui, Image restoration with noise suppression using a multiresolution support, Astronomy & Astrophysics, Suppl. Ser, 112 (1995), 179-189.
|
[31]
|
B. O' Donoghue, G. Stathopoulos and S. Boyd, A splitting method for optimal control, IEEE Transactions on Control Systems Technology, 21 (2013), 2432-2442.
|
[32]
|
C. T. Pham, G. Gamard, A. Kopylov and T. Tran, An algorithm for image restoration with mixed noise using total variation regularization, Turkish Journal of Electrical Engineering & Computer Sciences, 26 (2018), 2832-2846.
doi: 10.3906/elk-1803-100.
|
[33]
|
J. D. L. Reyes and C. Schönlieb, Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization, Inverse Problems & Imaging, 7 (2013), 1183-1214.
doi: 10.3934/ipi.2013.7.1183.
|
[34]
|
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[35]
|
J.-L. Starck, F. Murtagh and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach, Cambridge University Press, New York, USA, 1998.
doi: 10.1017/CBO9780511564352.
|
[36]
|
D. N. H. Thanh and S. D. Dvoenko, A method of total variation to remove the mixed Poisson-Gaussian noise, Pattern Recognition and Image Analysis, 26 (2016), 285-293.
doi: 10.1134/S1054661816020231.
|
[37]
|
Y. Wang, W. Yin and J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, Journal of Scientific Computing, 78 (2019), 29-63.
doi: 10.1007/s10915-018-0757-z.
|
[38]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[39]
|
C. Wu and X. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[40]
|
C. Wu, J. Zhang and X. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems & Imaging, 5 (2011), 237-261.
doi: 10.3934/ipi.2011.5.237.
|