April  2021, 15(2): 367-386. doi: 10.3934/ipi.2020072

Duality between range and no-response tests and its application for inverse problems

1. 

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan

2. 

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

3. 

Department of Mathematics and Statistics, University of Reading, RG6 6AH, UK

4. 

School of Mathematics, Southeast University, Nanjing 210096, China, Nanjing Center for Applied Mathematics, Nanjing 211135, China

* Corresponding author: Gen Nakamura

Received  April 2020 Revised  September 2020 Published  April 2021 Early access  November 2020

In this paper we will show the duality between the range test (RT) and no-response test (NRT) for the inverse boundary value problem for the Laplace equation in $ \Omega\setminus\overline D $ with an unknown obstacle $ D\Subset\Omega $ whose boundary $ \partial D $ is visible from the boundary $ \partial\Omega $ of $ \Omega $ and a measurement is given as a set of Cauchy data on $ \partial\Omega $. Here the Cauchy data is given by a unique solution $ u $ of the boundary value problem for the Laplace equation in $ \Omega\setminus\overline D $ with homogeneous and inhomogeneous Dirichlet boundary condition on $ \partial D $ and $ \partial\Omega $, respectively. These testing methods are domain sampling methods to estimate the location of the obstacle using test domains and the associated indicator functions. Also both of these testing methods can test the analytic extension of $ u $ to the exterior of a test domain. Since these methods are defined via some operators which are dual to each other, we could expect that there is a duality between the two methods. We will give this duality in terms of the equivalence of the pre-indicator functions associated to their indicator functions. As an application of the duality, the reconstruction of $ D $ using the RT gives the reconstruction of $ D $ using the NRT and vice versa. We will also give each of these reconstructions without using the duality if the Dirichlet data of the Cauchy data on $ \partial\Omega $ is not identically zero and the solution to the associated forward problem does not have any analytic extension across $ \partial D $. Moreover, we will show that these methods can still give the reconstruction of $ D $ if we a priori knows that $ D $ is a convex polygon and it satisfies one of the following two properties: all of its corner angles are irrational and its diameter is less than its distance to $ \partial\Omega $.

Citation: Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, 2021, 15 (2) : 367-386. doi: 10.3934/ipi.2020072
References:
[1]

G. AlessandriniE. BerettaE. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 755-806.   Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors, With Applications to Inverse Problems and Effective Medium Theory, Springer-Verlag, Berlin, 2007.  Google Scholar

[3]

D. D. AngD. D. Trong and M. Yamamoto, Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-Posed Probl., 3 (1996), 417-428.  doi: 10.1515/jiip.1995.3.6.417.  Google Scholar

[4]

M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Problems, 24 (2008), 035022, 27pp. doi: 10.1088/0266-5611/24/3/035022.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[6]

M. Burger, A level set method for inverse problems, Inverse Problems, 17 (2001), 1327-1355.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[7]

T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25pp. doi: 10.1088/0266-5611/30/9/095003.  Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^rd$ edition, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[9]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana University Mathematics Journal, 38 (1989), 563-579.  doi: 10.1512/iumj.1989.38.38027.  Google Scholar

[10]

N. Higashimori, A conditional stability estimate for determining a cavity in an elastic material, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 15-17.   Google Scholar

[11]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.  doi: 10.1007/s00208-012-0786-0.  Google Scholar

[12]

N. HondaG. NakamuraR. Potthast and M. Sini, The no-response approach and its relation to non-iterative methods for the inverse scattering, Annali di Matematica, 187 (2008), 7-37.  doi: 10.1007/s10231-006-0030-1.  Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[14]

M. Ikehata and T. Ohe, A numerical method for finding the convex hull of polygonal cavities using the enclosure method, Inverse Problems, 18 (2002), 111-124.  doi: 10.1088/0266-5611/18/1/308.  Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, 3$^rd$ edition, Springer-Verlag, Berlin, 2017. doi: 10.1007/978-3-319-51658-5.  Google Scholar

[16]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[17]

D. R. Luke and R. Potthast, The no response test-a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.  doi: 10.1137/S0036139902406887.  Google Scholar

[18] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[19] S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.   Google Scholar
[20]

A. Morrassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.  doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[21]

G. Nakamura and R. Potthast, Inverse Modelling, IOP Publishing, Bristol, 2015.  Google Scholar

[22]

R. Potthast, On the convergence of the no response test, SIAM J. Math. Anal., 38 (2007), 1808-1824.  doi: 10.1137/S0036141004441003.  Google Scholar

[23]

R. Potthast and M. Sini, The no response test for the reconstruction of polyhedral objects in electromagnetics, J. Comput. Appl. Math., 234 (2010), 1739-1746.  doi: 10.1016/j.cam.2009.08.023.  Google Scholar

[24]

R. PotthastJ. Sylvester and S. Kusiak, A 'range test' for determining scatteres with unknown physical properties, Inverse Problems, 19 (2003), 533-547.  doi: 10.1088/0266-5611/19/3/304.  Google Scholar

[25]

Q. Zia and R. Potthast, The range test and the no response test for Oseen problems: Theoretical foundation, J. Comput. Appl. Math., 304 (2016), 201-211.  doi: 10.1016/j.cam.2015.11.029.  Google Scholar

show all references

References:
[1]

G. AlessandriniE. BerettaE. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 755-806.   Google Scholar

[2]

H. Ammari and H. Kang, Polarization and Moment Tensors, With Applications to Inverse Problems and Effective Medium Theory, Springer-Verlag, Berlin, 2007.  Google Scholar

[3]

D. D. AngD. D. Trong and M. Yamamoto, Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-Posed Probl., 3 (1996), 417-428.  doi: 10.1515/jiip.1995.3.6.417.  Google Scholar

[4]

M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Problems, 24 (2008), 035022, 27pp. doi: 10.1088/0266-5611/24/3/035022.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[6]

M. Burger, A level set method for inverse problems, Inverse Problems, 17 (2001), 1327-1355.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[7]

T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25pp. doi: 10.1088/0266-5611/30/9/095003.  Google Scholar

[8]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^rd$ edition, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-1-4614-4942-3.  Google Scholar

[9]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana University Mathematics Journal, 38 (1989), 563-579.  doi: 10.1512/iumj.1989.38.38027.  Google Scholar

[10]

N. Higashimori, A conditional stability estimate for determining a cavity in an elastic material, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 15-17.   Google Scholar

[11]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.  doi: 10.1007/s00208-012-0786-0.  Google Scholar

[12]

N. HondaG. NakamuraR. Potthast and M. Sini, The no-response approach and its relation to non-iterative methods for the inverse scattering, Annali di Matematica, 187 (2008), 7-37.  doi: 10.1007/s10231-006-0030-1.  Google Scholar

[13]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[14]

M. Ikehata and T. Ohe, A numerical method for finding the convex hull of polygonal cavities using the enclosure method, Inverse Problems, 18 (2002), 111-124.  doi: 10.1088/0266-5611/18/1/308.  Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, 3$^rd$ edition, Springer-Verlag, Berlin, 2017. doi: 10.1007/978-3-319-51658-5.  Google Scholar

[16]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[17]

D. R. Luke and R. Potthast, The no response test-a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.  doi: 10.1137/S0036139902406887.  Google Scholar

[18] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[19] S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.   Google Scholar
[20]

A. Morrassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.  doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[21]

G. Nakamura and R. Potthast, Inverse Modelling, IOP Publishing, Bristol, 2015.  Google Scholar

[22]

R. Potthast, On the convergence of the no response test, SIAM J. Math. Anal., 38 (2007), 1808-1824.  doi: 10.1137/S0036141004441003.  Google Scholar

[23]

R. Potthast and M. Sini, The no response test for the reconstruction of polyhedral objects in electromagnetics, J. Comput. Appl. Math., 234 (2010), 1739-1746.  doi: 10.1016/j.cam.2009.08.023.  Google Scholar

[24]

R. PotthastJ. Sylvester and S. Kusiak, A 'range test' for determining scatteres with unknown physical properties, Inverse Problems, 19 (2003), 533-547.  doi: 10.1088/0266-5611/19/3/304.  Google Scholar

[25]

Q. Zia and R. Potthast, The range test and the no response test for Oseen problems: Theoretical foundation, J. Comput. Appl. Math., 304 (2016), 201-211.  doi: 10.1016/j.cam.2015.11.029.  Google Scholar

[1]

Alvaro Sandroni, Eran Shmaya. A prequential test for exchangeable theories. Journal of Dynamics & Games, 2014, 1 (3) : 497-505. doi: 10.3934/jdg.2014.1.497

[2]

Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 881-891. doi: 10.3934/jimo.2018075

[3]

Onur Teymur, Sarah Filippi. A Bayesian nonparametric test for conditional independence. Foundations of Data Science, 2020, 2 (2) : 155-172. doi: 10.3934/fods.2020009

[4]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[5]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[6]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems & Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[7]

Segismundo S. Izquierdo, Luis R. Izquierdo. "Test two, choose the better" leads to high cooperation in the Centipede game. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021018

[8]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[9]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[10]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems & Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[11]

Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems & Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036

[12]

Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021038

[13]

Tamar Friedlander, Naama Brenner. Adaptive response and enlargement of dynamic range. Mathematical Biosciences & Engineering, 2011, 8 (2) : 515-528. doi: 10.3934/mbe.2011.8.515

[14]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[15]

Jan Haškovec, Dietmar Oelz. A free boundary problem for aggregation by short range sensing and differentiated diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1461-1480. doi: 10.3934/dcdsb.2015.20.1461

[16]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[17]

Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1673-1686. doi: 10.3934/mbe.2013.10.1673

[18]

J. M. Peña. Refinable functions with general dilation and a stable test for generalized Routh-Hurwitz conditions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 809-818. doi: 10.3934/cpaa.2007.6.809

[19]

Amitava Mukhopadhyay, Andrea De Gaetano, Ovide Arino. Modeling the intra-venous glucose tolerance test: A global study for a single-distributed-delay model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 407-417. doi: 10.3934/dcdsb.2004.4.407

[20]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (97)
  • HTML views (149)
  • Cited by (0)

[Back to Top]