-
Previous Article
Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies
- IPI Home
- This Issue
-
Next Article
Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net
Duality between range and no-response tests and its application for inverse problems
1. | Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan |
2. | Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan |
3. | Department of Mathematics and Statistics, University of Reading, RG6 6AH, UK |
4. | School of Mathematics, Southeast University, Nanjing 210096, China, Nanjing Center for Applied Mathematics, Nanjing 211135, China |
In this paper we will show the duality between the range test (RT) and no-response test (NRT) for the inverse boundary value problem for the Laplace equation in $ \Omega\setminus\overline D $ with an unknown obstacle $ D\Subset\Omega $ whose boundary $ \partial D $ is visible from the boundary $ \partial\Omega $ of $ \Omega $ and a measurement is given as a set of Cauchy data on $ \partial\Omega $. Here the Cauchy data is given by a unique solution $ u $ of the boundary value problem for the Laplace equation in $ \Omega\setminus\overline D $ with homogeneous and inhomogeneous Dirichlet boundary condition on $ \partial D $ and $ \partial\Omega $, respectively. These testing methods are domain sampling methods to estimate the location of the obstacle using test domains and the associated indicator functions. Also both of these testing methods can test the analytic extension of $ u $ to the exterior of a test domain. Since these methods are defined via some operators which are dual to each other, we could expect that there is a duality between the two methods. We will give this duality in terms of the equivalence of the pre-indicator functions associated to their indicator functions. As an application of the duality, the reconstruction of $ D $ using the RT gives the reconstruction of $ D $ using the NRT and vice versa. We will also give each of these reconstructions without using the duality if the Dirichlet data of the Cauchy data on $ \partial\Omega $ is not identically zero and the solution to the associated forward problem does not have any analytic extension across $ \partial D $. Moreover, we will show that these methods can still give the reconstruction of $ D $ if we a priori knows that $ D $ is a convex polygon and it satisfies one of the following two properties: all of its corner angles are irrational and its diameter is less than its distance to $ \partial\Omega $.
References:
[1] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella,
Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 755-806.
|
[2] |
H. Ammari and H. Kang, Polarization and Moment Tensors, With Applications to Inverse Problems and Effective Medium Theory, Springer-Verlag, Berlin, 2007. |
[3] |
D. D. Ang, D. D. Trong and M. Yamamoto,
Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-Posed Probl., 3 (1996), 417-428.
doi: 10.1515/jiip.1995.3.6.417. |
[4] |
M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Problems, 24 (2008), 035022, 27pp.
doi: 10.1088/0266-5611/24/3/035022. |
[5] |
L. Bourgeois and J. Dardé,
A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377.
doi: 10.3934/ipi.2010.4.351. |
[6] |
M. Burger,
A level set method for inverse problems, Inverse Problems, 17 (2001), 1327-1355.
doi: 10.1088/0266-5611/17/5/307. |
[7] |
T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25pp.
doi: 10.1088/0266-5611/30/9/095003. |
[8] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^rd$ edition, Springer-Verlag, Berlin, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[9] |
A. Friedman and V. Isakov,
On the uniqueness in the inverse conductivity problem with one measurement, Indiana University Mathematics Journal, 38 (1989), 563-579.
doi: 10.1512/iumj.1989.38.38027. |
[10] |
N. Higashimori,
A conditional stability estimate for determining a cavity in an elastic material, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 15-17.
|
[11] |
N. Honda, G. Nakamura and M. Sini,
Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.
doi: 10.1007/s00208-012-0786-0. |
[12] |
N. Honda, G. Nakamura, R. Potthast and M. Sini,
The no-response approach and its relation to non-iterative methods for the inverse scattering, Annali di Matematica, 187 (2008), 7-37.
doi: 10.1007/s10231-006-0030-1. |
[13] |
M. Ikehata,
Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.
doi: 10.1088/0266-5611/15/5/308. |
[14] |
M. Ikehata and T. Ohe,
A numerical method for finding the convex hull of polygonal cavities using the enclosure method, Inverse Problems, 18 (2002), 111-124.
doi: 10.1088/0266-5611/18/1/308. |
[15] |
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^rd$ edition, Springer-Verlag, Berlin, 2017.
doi: 10.1007/978-3-319-51658-5. |
[16] |
R. Kress and W. Rundell,
Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.
doi: 10.1088/0266-5611/21/4/002. |
[17] |
D. R. Luke and R. Potthast,
The no response test-a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.
doi: 10.1137/S0036139902406887. |
[18] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
![]() |
[19] |
S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.
![]() |
[20] |
A. Morrassi and E. Rosset,
Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.
doi: 10.1088/0266-5611/20/2/010. |
[21] |
G. Nakamura and R. Potthast, Inverse Modelling, IOP Publishing, Bristol, 2015. |
[22] |
R. Potthast,
On the convergence of the no response test, SIAM J. Math. Anal., 38 (2007), 1808-1824.
doi: 10.1137/S0036141004441003. |
[23] |
R. Potthast and M. Sini,
The no response test for the reconstruction of polyhedral objects in electromagnetics, J. Comput. Appl. Math., 234 (2010), 1739-1746.
doi: 10.1016/j.cam.2009.08.023. |
[24] |
R. Potthast, J. Sylvester and S. Kusiak,
A 'range test' for determining scatteres with unknown physical properties, Inverse Problems, 19 (2003), 533-547.
doi: 10.1088/0266-5611/19/3/304. |
[25] |
Q. Zia and R. Potthast,
The range test and the no response test for Oseen problems: Theoretical foundation, J. Comput. Appl. Math., 304 (2016), 201-211.
doi: 10.1016/j.cam.2015.11.029. |
show all references
References:
[1] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella,
Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 755-806.
|
[2] |
H. Ammari and H. Kang, Polarization and Moment Tensors, With Applications to Inverse Problems and Effective Medium Theory, Springer-Verlag, Berlin, 2007. |
[3] |
D. D. Ang, D. D. Trong and M. Yamamoto,
Unique continuation and identification of boundary of an elastic body, J. Inverse Ill-Posed Probl., 3 (1996), 417-428.
doi: 10.1515/jiip.1995.3.6.417. |
[4] |
M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Problems, 24 (2008), 035022, 27pp.
doi: 10.1088/0266-5611/24/3/035022. |
[5] |
L. Bourgeois and J. Dardé,
A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377.
doi: 10.3934/ipi.2010.4.351. |
[6] |
M. Burger,
A level set method for inverse problems, Inverse Problems, 17 (2001), 1327-1355.
doi: 10.1088/0266-5611/17/5/307. |
[7] |
T. Chow, K. Ito and J. Zou, A direct sampling method for electrical impedance tomography, Inverse Problems, 30 (2014), 095003, 25pp.
doi: 10.1088/0266-5611/30/9/095003. |
[8] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^rd$ edition, Springer-Verlag, Berlin, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[9] |
A. Friedman and V. Isakov,
On the uniqueness in the inverse conductivity problem with one measurement, Indiana University Mathematics Journal, 38 (1989), 563-579.
doi: 10.1512/iumj.1989.38.38027. |
[10] |
N. Higashimori,
A conditional stability estimate for determining a cavity in an elastic material, Proc. Japan Acad. Ser. A Math. Sci., 78 (2002), 15-17.
|
[11] |
N. Honda, G. Nakamura and M. Sini,
Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.
doi: 10.1007/s00208-012-0786-0. |
[12] |
N. Honda, G. Nakamura, R. Potthast and M. Sini,
The no-response approach and its relation to non-iterative methods for the inverse scattering, Annali di Matematica, 187 (2008), 7-37.
doi: 10.1007/s10231-006-0030-1. |
[13] |
M. Ikehata,
Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.
doi: 10.1088/0266-5611/15/5/308. |
[14] |
M. Ikehata and T. Ohe,
A numerical method for finding the convex hull of polygonal cavities using the enclosure method, Inverse Problems, 18 (2002), 111-124.
doi: 10.1088/0266-5611/18/1/308. |
[15] |
V. Isakov, Inverse Problems for Partial Differential Equations, 3$^rd$ edition, Springer-Verlag, Berlin, 2017.
doi: 10.1007/978-3-319-51658-5. |
[16] |
R. Kress and W. Rundell,
Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.
doi: 10.1088/0266-5611/21/4/002. |
[17] |
D. R. Luke and R. Potthast,
The no response test-a sampling method for inverse scattering problems, SIAM J. Appl. Math., 63 (2003), 1292-1312.
doi: 10.1137/S0036139902406887. |
[18] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
![]() |
[19] |
S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.
![]() |
[20] |
A. Morrassi and E. Rosset,
Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480.
doi: 10.1088/0266-5611/20/2/010. |
[21] |
G. Nakamura and R. Potthast, Inverse Modelling, IOP Publishing, Bristol, 2015. |
[22] |
R. Potthast,
On the convergence of the no response test, SIAM J. Math. Anal., 38 (2007), 1808-1824.
doi: 10.1137/S0036141004441003. |
[23] |
R. Potthast and M. Sini,
The no response test for the reconstruction of polyhedral objects in electromagnetics, J. Comput. Appl. Math., 234 (2010), 1739-1746.
doi: 10.1016/j.cam.2009.08.023. |
[24] |
R. Potthast, J. Sylvester and S. Kusiak,
A 'range test' for determining scatteres with unknown physical properties, Inverse Problems, 19 (2003), 533-547.
doi: 10.1088/0266-5611/19/3/304. |
[25] |
Q. Zia and R. Potthast,
The range test and the no response test for Oseen problems: Theoretical foundation, J. Comput. Appl. Math., 304 (2016), 201-211.
doi: 10.1016/j.cam.2015.11.029. |
[1] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[2] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[3] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[4] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[5] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[6] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[7] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[8] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[9] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[10] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[11] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[12] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[13] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[14] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[15] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[16] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[17] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[18] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[19] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[20] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
2019 Impact Factor: 1.373
Tools
Article outline
[Back to Top]