[1]
|
W. B. Agocs, Least squares residual anomaly determination, Geophysics, 16 (1951), 686-696.
doi: 10.1190/1.1437720.
|
[2]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[3]
|
D. S. Broomhead and G. P. King, Extracting qualitative dynamics from experimental data, Physica D: Nonlinear Phenomena, 20 (1986), 217-236.
doi: 10.1016/0167-2789(86)90031-X.
|
[4]
|
H.Q. Cai, J.-F. Cai, T. Wang, and G. Yin, Accelerated Structured Alternating Projections for Robust Spectrally Sparse Signal Recovery, preprint, http://arXiv.org/abs/1910.05859, (2020).
|
[5]
|
E. J. Candès, X. D. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM (JACM), 58 (2011), Art. 11, 37 pp.
doi: 10.1145/1970392.1970395.
|
[6]
|
K. C. Clarke, Optimum second-derivative and downward-continuation filters, Geophysics, 34 (1969), 424-437.
|
[7]
|
M. Fedi and T. Quarta, Wavelet analysis for the regional-residual and local separation of potential field anomalies, Geophysical Prospecting, 46 (1998), 507-525.
doi: 10.1046/j.1365-2478.1998.00105.x.
|
[8]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Press, Baltimore, 1996.
|
[9]
|
N. Golyandina, I. Florinsky and K. Usevich, Filtering of digital terrain models by 2D singular spectrum analysis, International Journal of Ecology & Development, 8 (2007), 81-94.
|
[10]
|
Z. Z. Hou and W. C. Yang, Wavelet transform and multi-scale analysis on gravity anomalies of China, Chinese Journal of Geophysics, 40 (1997), 85-95.
|
[11]
|
N. Halko, P. Martinsson and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011), 217-288.
doi: 10.1137/090771806.
|
[12]
|
E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin and M. Tygert, Randomized algorithms for the low-rank approximation of matrices, Proceedings of the National Academy of Sciences, 104 (2007), 20167-20172.
doi: 10.1073/pnas.0709640104.
|
[13]
|
Z. C. Lin and H. Y. Zhang, Low-rank Models in Visual Analysis, , Elsevier Science Publishing Co Inc, New York, 2017.
|
[14]
|
Z. C. Lin, M. M. Chen, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, preprint, arXiv: 1009.5055, (2013).
|
[15]
|
L. Lu, W. Xu and S. Z. Qiao, A fast SVD for multilevel block Hankel matrices with minimal memory storage, Numerical Algorithms, 69 (2015), 875-891.
doi: 10.1007/s11075-014-9930-0.
|
[16]
|
A. Mandal and and S. Niyogi, Filter assisted bi-dimensional empirical mode decomposition: a hybrid approach for regional-residual separation of gravity anomaly, Journal of Applied Geophysics, 159 (2018), 218-227.
|
[17]
|
K. L. Mickus, C. L. V. Aiken and W. D. Kennedy, Regional-residual gravity anomaly separation using the minimum-curvature technique, Geophysics, 56 (1991), 279-283.
doi: 10.1190/1.1443041.
|
[18]
|
P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, Non-convex robust PCA, Advances in Neural Information Processing Systems, (2014), 1107–1115.
|
[19]
|
R. S. Pawlowski, Preferential continuation for potential-field anomaly enhancement, Geophysics, 60 (1995), 390-398.
doi: 10.1190/1.1443775.
|
[20]
|
R. S. Pawlowski and R. O. Hansen, Gravity anomaly separation by Wiener filtering, Geophysics, 55 (1990), 539-548.
doi: 10.1190/1.1442865.
|
[21]
|
A. Spector and F. S. Grant, Statistical models for interpreting aeromagnetic data, Geophysics, 35 (1970), 293-302.
doi: 10.1190/1.1440092.
|
[22]
|
F. Takens, Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, Warwick 1980, (1981), 366–381.
|
[23]
|
W. M. Telford, L. P. Geldart and R. E. Sheriff, Applied Geophysics,, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9781139167932.
|
[24]
|
A. A. Tsonis and J. B. Elsner, Mapping the channels of communication between the tropics and higher latitudes in the atmosphere, Physica D: Nonlinear Phenomena, 92 (1996), 237-244.
doi: 10.1016/0167-2789(95)00265-0.
|
[25]
|
S. Vatankhah, R. A. Renaut and V. E. Ardestani, A fast algorithm for regularized focused 3D inversion of gravity data using randomized singular-value decomposition, Geophysics, 83 (2018), G25–G34.
doi: 10.1190/geo2017-0386.1.
|
[26]
|
S. Vatankhah, S. Liu, R.A. Renaut, X. Hu and J. Baniamerian, Improving the use of the randomized singular value decomposition for the inversion of gravity and magnetic data, Geophysics, 85 (2020), G93–G107.
doi: 10.1190/geo2019-0603.1.
|
[27]
|
C. R. Vogel, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002.
doi: 10.1137/1.9780898717570.
|
[28]
|
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang and S. C. Yan, Sparse representation for computer vision and pattern recognition, Proceedings of the IEEE, 98 (2010), 1031-1044.
doi: 10.21236/ADA513248.
|
[29]
|
W. C. Yang, Z. Q. Shi, Z. Z. Hou and Z. Y. Cheng, Discrete wavelet transform for multiple decomposition of gravity anomalies, Chinese Journal of Geophysics, 44 (2001), 529-537.
doi: 10.1002/cjg2.171.
|
[30]
|
L. L. Zhang, T. Y. Hao and W. W. Jiang, Separation of potential field data using 3-D principal component analysis and textural analysis, Geophysical Journal International, 179 (2009), 1397-1413.
doi: 10.1111/j.1365-246X.2009.04357.x.
|
[31]
|
S. Zhang and M. Wang, Correction of simultaneous bad measurements by exploiting the low-rank Hankel structure, 2018 IEEE International Symposium on Information Theory (ISIT), (2018), 646–650.
doi: 10.1109/ISIT.2018.8437340.
|
[32]
|
D. Zhu, H. W. Li, T. Y. Liu, L. H. Fu and S. H. Zhang, Low-rank matrix decomposition method for potential field data separation, Geophysics, 85 (2020), G1–G16.
doi: 10.1190/geo2019-0016.1.
|