
-
Previous Article
Inverse $N$-body scattering with the time-dependent hartree-fock approximation
- IPI Home
- This Issue
-
Next Article
The interior transmission eigenvalue problem for elastic waves in media with obstacles
Tensor train rank minimization with nonlocal self-similarity for tensor completion
1. | School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China |
2. | Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong |
3. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China |
The tensor train (TT) rank has received increasing attention in tensor completion due to its ability to capture the global correlation of high-order tensors ($ \rm{order} >3 $). For third order visual data, direct TT rank minimization has not exploited the potential of TT rank for high-order tensors. The TT rank minimization accompany with ket augmentation, which transforms a lower-order tensor (e.g., visual data) into a higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we suggest the TT rank minimization with nonlocal self-similarity for tensor completion by simultaneously exploring the spatial, temporal/spectral, and nonlocal redundancy in visual data. More precisely, the TT rank minimization is performed on a formed higher-order tensor called group by stacking similar cubes, which naturally and fully takes advantage of the ability of TT rank for high-order tensors. Moreover, the perturbation analysis for the TT low-rankness of each group is established. We develop the alternating direction method of multipliers tailored for the specific structure to solve the proposed model. Extensive experiments demonstrate that the proposed method is superior to several existing state-of-the-art methods in terms of both qualitative and quantitative measures.
References:
[1] |
J. A. Bengua, H. N. Phiem, H. D. Tuan and M. N. Do,
Efficient tensor completion for color image and video recovery: Low-rank tensor train, IEEE Transactions on Image Processing, 26 (2017), 2466-2479.
doi: 10.1109/TIP.2017.2672439. |
[2] |
D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, 2003. |
[3] |
M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester,
Image inpainting, Siggraph, 4 (2000), 417-424.
doi: 10.21236/ADA437378. |
[4] |
J.-F. Cai, E. J. Cand$\grave{e}$s and Z. Shen,
A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982.
doi: 10.1137/080738970. |
[5] |
S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill and T. Q. Nguyen,
An augmented Lagrangian method for total variation video restoration, IEEE Transactions on Image Processing, 20 (2011), 3097-3111.
doi: 10.1109/TIP.2011.2158229. |
[6] |
R. H. Chan, M. Tao and X. Yuan,
Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 6 (2013), 680-697.
doi: 10.1137/110860185. |
[7] |
Y. Chang, L.-X. Yan and S. Zhong, Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2017), 5901–5909.
doi: 10.1109/CVPR.2017.625. |
[8] |
Y. Chen, C. Hsu and H. M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (2014), 577-591. Google Scholar |
[9] |
L.-B. Cui, X.-Q. Zhang and S.-L. Wu,
A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with $\mathcal{M}$-tensors, Computational and Applied Mathematics, 39 (2020), 1-16.
doi: 10.1007/s40314-020-01194-8. |
[10] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[11] |
M. Ding, T.-Z. Huang and T.-H. Ma, Cauchy noise removal using group-based low-rank prior, Applied Mathematics and Computation, 372 (2020), 124971, 15 pp.
doi: 10.1016/j.amc.2019.124971. |
[12] |
M. Ding, T.-Z. Huang, T.-Y. Ji, X.-L. Zhao and J.-H. Yang,
Low-rank tensor completion using matrix factorization based on tensor train rank and total variation, Journal of Scientific Computing, 81 (2019), 941-964.
doi: 10.1007/s10915-019-01044-8. |
[13] |
M. Ding, T.-Z. Huang, S. Wang, J.-J. Mei and X.-L. Zhao,
Total variation with overlapping group sparsity for deblurring images under Cauchy noise, Applied Mathematics and Computation, 341 (2019), 128-147.
doi: 10.1016/j.amc.2018.08.014. |
[14] |
Y. Du, G. Han, Y. Quan, Z. Yu, H. Wong, C. L. P. Chen and J. Zhang,
Exploiting global low-rank structure and local sparsity nature for tensor completion, IEEE Transactions on Cybernetics, 49 (2019), 3898-3910.
doi: 10.1109/TCYB.2018.2853122. |
[15] |
J. Eckstein and D. P. Bertsekas,
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[16] |
G. Ely, S. Aeron, N. Hao and M. E. Kilmer, 5D seismic data completion and denoising using a novel class of tensor decompositions, GEOPHYSICS, 80 (2015), V83–V95.
doi: 10.1190/geo2014-0467.1. |
[17] |
X. Fu, K.-J. Huang, B. Yang, W. K. Ma and N. D. Sidiropoulos,
Robust volume minimization-based matrix factorization for remote sensing and document clustering, IEEE Transactions on Signal Processing, 64 (2016), 6254-6268.
doi: 10.1109/TSP.2016.2602800. |
[18] |
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19pp.
doi: 10.1088/0266-5611/27/2/025010. |
[19] |
T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk,
Fast alternating direction optimization methods, SIAM Journal on Imaging Sciences, 7 (2014), 1588-1623.
doi: 10.1137/120896219. |
[20] |
L. Grasedyck, M. Kluge and S. Krämer, Alternating least squares tensor completion in the TT-format, preprint, arXiv: 1509.00311. Google Scholar |
[21] |
S.-H. Gu, L. Zhang, W.-M. Zuo and X.-C. Feng, Weighted nuclear norm minimization with application to image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2014), 2862–2869.
doi: 10.1109/CVPR.2014.366. |
[22] |
B.-S. He and X. Yuan,
On the O(1/n) convergence rate of the douglas-rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936. |
[23] |
W. He, H.-Y. Zhang, L.-P. Zhang and H.-F. Shen,
Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration, IEEE Transactions on Geoscience and Remote Sensing, 54 (2016), 178-188.
doi: 10.1109/TGRS.2015.2452812. |
[24] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, Journal of the ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[25] |
Y.-M. Huang, H.-Y. Yan, Y.-W. Wen and X. Yang,
Rank minimization with applications to image noise removal, Information Sciences, 429 (2018), 147-163.
doi: 10.1016/j.ins.2017.10.047. |
[26] |
T.-X. Jiang, T.-Z. Huang, X.-L. Zhao and L.-J. Deng, Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm, Journal of Computational and Applied Mathematics, 372 (2020), 112680, 15pp.
doi: 10.1016/j.cam.2019.112680. |
[27] |
T.-X. Jiang, M. K. Ng, X.-L. Zhao and T.-Z. Huang,
Framelet representation of tensor nuclear norm for third-order tensor completion, IEEE Transactions on Image Processing, 29 (2020), 7233-7244.
doi: 10.1109/TIP.2020.3000349. |
[28] |
T. G. Kolda, B. W. Bader and J. P. Kenny, Higher-order Web link analysis using multilinear algebra, IEEE International Conference on Data Mining, (2005), 242–249.
doi: 10.1109/ICDM.2005.77. |
[29] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[30] |
M. E. Kilmer, K. Braman, N. Hao and R. C. Hoover,
Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.
doi: 10.1137/110837711. |
[31] |
N. Komodakis, Image inpainting, IEEE Conference on Computer Vision and Pattern Recognition, 1 (2006), 442-452. Google Scholar |
[32] |
R.-J. Lai and J. Li,
Manifold based low-rank regularization for image restoration and semi-supervised learning, Journal of Scientific Computing, 74 (2018), 1241-1263.
doi: 10.1007/s10915-017-0492-x. |
[33] |
J. I. Latorre, Image Compression and Entanglement, Computer Science, 2005. Google Scholar |
[34] |
F. Li, M. K. Ng and R. J. Plemmons,
Coupled segmentation and denoising/deblurring models for hyperspectral material identification, Numerical Linear Algebra with Applications, 19 (2012), 153-173.
doi: 10.1002/nla.750. |
[35] |
Y.-P. Liu, Z. Long and C. Zhu,
Image completion using low tensor tree rank and total variation minimization, IEEE Transactions on Multimedia, 21 (2019), 338-350.
doi: 10.1109/TMM.2018.2859026. |
[36] |
Y.-Y. Liu, F.-H. Shang, L.-C. Jiao, J. Cheng and H. Cheng,
Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data, IEEE Transactions on Cybernetics, 45 (2015), 2437-2448.
doi: 10.1109/TCYB.2014.2374695. |
[37] |
Y.-P. Liu, Z. Long, H.-Y. Huang and C. Zhu,
Low CP rank and tucker rank tensor completion for estimating missing components in image data, IEEE Transactions on Circuits and Systems for Video Technology, 30 (2020), 944-954.
doi: 10.1109/TCSVT.2019.2901311. |
[38] |
J. Liu, P. Musialski, P. Wonka and J. Ye,
Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.
doi: 10.1109/TPAMI.2012.39. |
[39] |
C.-Y. Lu, J.-S. Feng, Y.-D. Chen, W. Liu, Z.-C. Lin and S.-C. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257.
doi: 10.1109/CVPR.2016.567. |
[40] |
C.-Y. Lu, J.-S. Feng, Z.-C. Lin and S.-C. Yan, Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements, International Joint Conference on Artificial Intelligence, 2018.
doi: 10.24963/ijcai.2018/347. |
[41] |
I. V. Oseledets,
Tensor-train decomposition, SIAM Journal on Scientific Computing, 33 (2011), 2295-2317.
doi: 10.1137/090752286. |
[42] |
S. Osher, Z.-Q. Shi and W. Zhu,
Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686. |
[43] |
E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology, 8 (2017), 16: 1–16: 44.
doi: 10.1145/2915921. |
[44] |
Z.-Q. Shi, S. Osher and W. Zhu,
Weighted nonlocal laplacian on interpolation from sparse data, Journal of Scientific Computing, 73 (2017), 1164-1177.
doi: 10.1007/s10915-017-0421-z. |
[45] |
N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos,
Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.
doi: 10.1109/TSP.2017.2690524. |
[46] |
G. W. Stewart, Matrix Algorithms, Vol I: Basic Decomposition, SIAM, 2001.
doi: 10.1137/1.9780898718058. |
[47] |
W. Wang, V. Aggarwal and S. Aeron, Tensor completion by alternating minimization under the tensor train (TT) model, preprint, arXiv: 1609.05587. Google Scholar |
[48] |
Y. Wang, J.-J. Peng, Q. Zhao, Y. Leung, X.-L. Zhao and D.-Y. Meng, Hyperspectral image restoration via total variation regularized low-rank tensor decomposition, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (2018), 1227-1243. Google Scholar |
[49] |
Y. Wang, D.-Y. Meng and M. Yuan,
Sparse recovery: From vectors to tensors, National Science Review, 5 (2018), 756-767.
doi: 10.1093/nsr/nwx069. |
[50] |
T. Xie, S.-T. Li, L.-Y. Fang and L.-C. Liu,
Tensor completion via nonlocal low-rank regularization, IEEE Transactions on Cybernetics, 49 (2019), 2344-2354.
doi: 10.1109/TCYB.2018.2825598. |
[51] |
Z.-M. Xing, M.-Y. Zhou, A. Castrodad, G. Sapiro and L. Carin,
Dictionary learning for noisy and incomplete hyperspectral images, SIAM Journal on Imaging Sciences, 5 (2012), 33-56.
doi: 10.1137/110837486. |
[52] |
B. Xiong, Q.-G. Liu, J.-J. Xiong, S.-Q. Li, S.-S. Wang and D. Liang,
Field-of-experts filters guided tensor completion, IEEE Transactions on Multimedia, 20 (2018), 2316-2329.
doi: 10.1109/TMM.2018.2806225. |
[53] |
R.-T. Xu, Y. Xu and Y.-H. Quan, Factorized tensor dictionary learning for visual tensor data completion, IEEE Transactions on Multimedia, (2020), 1–14. Google Scholar |
[54] |
Y.-Y. Xu, R.-R. Hao, W.-T. Yin and Z.-X. Su,
Parallel matrix factorization for low-rank tensor completion, Inverse Problems and Imaging, 9 (2017), 601-624.
doi: 10.3934/ipi.2015.9.601. |
[55] |
J.-H. Yang, X.-L. Zhao, T.-H. Ma, M. Ding and T.-Z. Huang,
Tensor train rank minimization with hybrid smoothness for visual data recovery, Applied Mathematical Modelling, 81 (2020), 711-726.
doi: 10.1016/j.apm.2020.01.039. |
[56] |
J.-H. Yang, X.-L. Zhao, T.-H. Ma, Y. Chen, T.-Z. Huang and M. Ding,
Remote sensing image destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, Journal of Computational and Applied Mathematics, 363 (2020), 124-144.
doi: 10.1016/j.cam.2019.06.004. |
[57] |
T. Yokota, Q.-B. Zhao, C. Li and A. Cichocki,
Smooth PARAFAC decomposition for tensor completion, IEEE Transactions on Signal Processing, 64 (2016), 5423-5436.
doi: 10.1109/TSP.2016.2586759. |
[58] |
Q.-B. Zhao, L-Q. Zhang and A. Cichocki,
Bayesian CP factorization of incomplete tensors with automatic rank determination, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (2015), 1751-1763.
doi: 10.1109/TPAMI.2015.2392756. |
[59] |
X.-L. Zhao, W. Wang, T.-Y. Zeng, T.-Z. Huang and M. K. Ng,
Total variation structured total least squares method for image restoration, SIAM Journal on Scientific Computing, 35 (2013), 1304-1320.
doi: 10.1137/130915406. |
[60] |
X.-J. Zhang,
A nonconvex relaxation approach to low-rank tensor completion, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 1659-1671.
doi: 10.1109/TNNLS.2018.2872583. |
[61] |
K.-B. Zhang, X.-B. Gao, D. -C.Tao and X.-L. Li,
Single image super-resolution with non-local means and steering kernel regression, IEEE Transactions on Image Processing, 21 (2012), 4544-4556.
doi: 10.1109/TIP.2012.2208977. |
[62] |
Z. Zhang, G. Ely and S. Aeron,
Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.
doi: 10.1109/TSP.2016.2639466. |
[63] |
Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Y. Chen and W. He, Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image, IEEE Transactions on Geoscience and Remote Sensing, (2020), 1–15. Google Scholar |
show all references
References:
[1] |
J. A. Bengua, H. N. Phiem, H. D. Tuan and M. N. Do,
Efficient tensor completion for color image and video recovery: Low-rank tensor train, IEEE Transactions on Image Processing, 26 (2017), 2466-2479.
doi: 10.1109/TIP.2017.2672439. |
[2] |
D. P. Bertsekas, A. Nedic and A. E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, 2003. |
[3] |
M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester,
Image inpainting, Siggraph, 4 (2000), 417-424.
doi: 10.21236/ADA437378. |
[4] |
J.-F. Cai, E. J. Cand$\grave{e}$s and Z. Shen,
A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982.
doi: 10.1137/080738970. |
[5] |
S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill and T. Q. Nguyen,
An augmented Lagrangian method for total variation video restoration, IEEE Transactions on Image Processing, 20 (2011), 3097-3111.
doi: 10.1109/TIP.2011.2158229. |
[6] |
R. H. Chan, M. Tao and X. Yuan,
Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 6 (2013), 680-697.
doi: 10.1137/110860185. |
[7] |
Y. Chang, L.-X. Yan and S. Zhong, Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2017), 5901–5909.
doi: 10.1109/CVPR.2017.625. |
[8] |
Y. Chen, C. Hsu and H. M. Liao, Simultaneous tensor decomposition and completion using factor priors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (2014), 577-591. Google Scholar |
[9] |
L.-B. Cui, X.-Q. Zhang and S.-L. Wu,
A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with $\mathcal{M}$-tensors, Computational and Applied Mathematics, 39 (2020), 1-16.
doi: 10.1007/s40314-020-01194-8. |
[10] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian,
Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238. |
[11] |
M. Ding, T.-Z. Huang and T.-H. Ma, Cauchy noise removal using group-based low-rank prior, Applied Mathematics and Computation, 372 (2020), 124971, 15 pp.
doi: 10.1016/j.amc.2019.124971. |
[12] |
M. Ding, T.-Z. Huang, T.-Y. Ji, X.-L. Zhao and J.-H. Yang,
Low-rank tensor completion using matrix factorization based on tensor train rank and total variation, Journal of Scientific Computing, 81 (2019), 941-964.
doi: 10.1007/s10915-019-01044-8. |
[13] |
M. Ding, T.-Z. Huang, S. Wang, J.-J. Mei and X.-L. Zhao,
Total variation with overlapping group sparsity for deblurring images under Cauchy noise, Applied Mathematics and Computation, 341 (2019), 128-147.
doi: 10.1016/j.amc.2018.08.014. |
[14] |
Y. Du, G. Han, Y. Quan, Z. Yu, H. Wong, C. L. P. Chen and J. Zhang,
Exploiting global low-rank structure and local sparsity nature for tensor completion, IEEE Transactions on Cybernetics, 49 (2019), 3898-3910.
doi: 10.1109/TCYB.2018.2853122. |
[15] |
J. Eckstein and D. P. Bertsekas,
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[16] |
G. Ely, S. Aeron, N. Hao and M. E. Kilmer, 5D seismic data completion and denoising using a novel class of tensor decompositions, GEOPHYSICS, 80 (2015), V83–V95.
doi: 10.1190/geo2014-0467.1. |
[17] |
X. Fu, K.-J. Huang, B. Yang, W. K. Ma and N. D. Sidiropoulos,
Robust volume minimization-based matrix factorization for remote sensing and document clustering, IEEE Transactions on Signal Processing, 64 (2016), 6254-6268.
doi: 10.1109/TSP.2016.2602800. |
[18] |
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19pp.
doi: 10.1088/0266-5611/27/2/025010. |
[19] |
T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk,
Fast alternating direction optimization methods, SIAM Journal on Imaging Sciences, 7 (2014), 1588-1623.
doi: 10.1137/120896219. |
[20] |
L. Grasedyck, M. Kluge and S. Krämer, Alternating least squares tensor completion in the TT-format, preprint, arXiv: 1509.00311. Google Scholar |
[21] |
S.-H. Gu, L. Zhang, W.-M. Zuo and X.-C. Feng, Weighted nuclear norm minimization with application to image denoising, IEEE Conference on Computer Vision and Pattern Recognition, (2014), 2862–2869.
doi: 10.1109/CVPR.2014.366. |
[22] |
B.-S. He and X. Yuan,
On the O(1/n) convergence rate of the douglas-rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936. |
[23] |
W. He, H.-Y. Zhang, L.-P. Zhang and H.-F. Shen,
Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration, IEEE Transactions on Geoscience and Remote Sensing, 54 (2016), 178-188.
doi: 10.1109/TGRS.2015.2452812. |
[24] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, Journal of the ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[25] |
Y.-M. Huang, H.-Y. Yan, Y.-W. Wen and X. Yang,
Rank minimization with applications to image noise removal, Information Sciences, 429 (2018), 147-163.
doi: 10.1016/j.ins.2017.10.047. |
[26] |
T.-X. Jiang, T.-Z. Huang, X.-L. Zhao and L.-J. Deng, Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm, Journal of Computational and Applied Mathematics, 372 (2020), 112680, 15pp.
doi: 10.1016/j.cam.2019.112680. |
[27] |
T.-X. Jiang, M. K. Ng, X.-L. Zhao and T.-Z. Huang,
Framelet representation of tensor nuclear norm for third-order tensor completion, IEEE Transactions on Image Processing, 29 (2020), 7233-7244.
doi: 10.1109/TIP.2020.3000349. |
[28] |
T. G. Kolda, B. W. Bader and J. P. Kenny, Higher-order Web link analysis using multilinear algebra, IEEE International Conference on Data Mining, (2005), 242–249.
doi: 10.1109/ICDM.2005.77. |
[29] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[30] |
M. E. Kilmer, K. Braman, N. Hao and R. C. Hoover,
Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.
doi: 10.1137/110837711. |
[31] |
N. Komodakis, Image inpainting, IEEE Conference on Computer Vision and Pattern Recognition, 1 (2006), 442-452. Google Scholar |
[32] |
R.-J. Lai and J. Li,
Manifold based low-rank regularization for image restoration and semi-supervised learning, Journal of Scientific Computing, 74 (2018), 1241-1263.
doi: 10.1007/s10915-017-0492-x. |
[33] |
J. I. Latorre, Image Compression and Entanglement, Computer Science, 2005. Google Scholar |
[34] |
F. Li, M. K. Ng and R. J. Plemmons,
Coupled segmentation and denoising/deblurring models for hyperspectral material identification, Numerical Linear Algebra with Applications, 19 (2012), 153-173.
doi: 10.1002/nla.750. |
[35] |
Y.-P. Liu, Z. Long and C. Zhu,
Image completion using low tensor tree rank and total variation minimization, IEEE Transactions on Multimedia, 21 (2019), 338-350.
doi: 10.1109/TMM.2018.2859026. |
[36] |
Y.-Y. Liu, F.-H. Shang, L.-C. Jiao, J. Cheng and H. Cheng,
Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data, IEEE Transactions on Cybernetics, 45 (2015), 2437-2448.
doi: 10.1109/TCYB.2014.2374695. |
[37] |
Y.-P. Liu, Z. Long, H.-Y. Huang and C. Zhu,
Low CP rank and tucker rank tensor completion for estimating missing components in image data, IEEE Transactions on Circuits and Systems for Video Technology, 30 (2020), 944-954.
doi: 10.1109/TCSVT.2019.2901311. |
[38] |
J. Liu, P. Musialski, P. Wonka and J. Ye,
Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.
doi: 10.1109/TPAMI.2012.39. |
[39] |
C.-Y. Lu, J.-S. Feng, Y.-D. Chen, W. Liu, Z.-C. Lin and S.-C. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257.
doi: 10.1109/CVPR.2016.567. |
[40] |
C.-Y. Lu, J.-S. Feng, Z.-C. Lin and S.-C. Yan, Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements, International Joint Conference on Artificial Intelligence, 2018.
doi: 10.24963/ijcai.2018/347. |
[41] |
I. V. Oseledets,
Tensor-train decomposition, SIAM Journal on Scientific Computing, 33 (2011), 2295-2317.
doi: 10.1137/090752286. |
[42] |
S. Osher, Z.-Q. Shi and W. Zhu,
Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686. |
[43] |
E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology, 8 (2017), 16: 1–16: 44.
doi: 10.1145/2915921. |
[44] |
Z.-Q. Shi, S. Osher and W. Zhu,
Weighted nonlocal laplacian on interpolation from sparse data, Journal of Scientific Computing, 73 (2017), 1164-1177.
doi: 10.1007/s10915-017-0421-z. |
[45] |
N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos,
Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.
doi: 10.1109/TSP.2017.2690524. |
[46] |
G. W. Stewart, Matrix Algorithms, Vol I: Basic Decomposition, SIAM, 2001.
doi: 10.1137/1.9780898718058. |
[47] |
W. Wang, V. Aggarwal and S. Aeron, Tensor completion by alternating minimization under the tensor train (TT) model, preprint, arXiv: 1609.05587. Google Scholar |
[48] |
Y. Wang, J.-J. Peng, Q. Zhao, Y. Leung, X.-L. Zhao and D.-Y. Meng, Hyperspectral image restoration via total variation regularized low-rank tensor decomposition, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (2018), 1227-1243. Google Scholar |
[49] |
Y. Wang, D.-Y. Meng and M. Yuan,
Sparse recovery: From vectors to tensors, National Science Review, 5 (2018), 756-767.
doi: 10.1093/nsr/nwx069. |
[50] |
T. Xie, S.-T. Li, L.-Y. Fang and L.-C. Liu,
Tensor completion via nonlocal low-rank regularization, IEEE Transactions on Cybernetics, 49 (2019), 2344-2354.
doi: 10.1109/TCYB.2018.2825598. |
[51] |
Z.-M. Xing, M.-Y. Zhou, A. Castrodad, G. Sapiro and L. Carin,
Dictionary learning for noisy and incomplete hyperspectral images, SIAM Journal on Imaging Sciences, 5 (2012), 33-56.
doi: 10.1137/110837486. |
[52] |
B. Xiong, Q.-G. Liu, J.-J. Xiong, S.-Q. Li, S.-S. Wang and D. Liang,
Field-of-experts filters guided tensor completion, IEEE Transactions on Multimedia, 20 (2018), 2316-2329.
doi: 10.1109/TMM.2018.2806225. |
[53] |
R.-T. Xu, Y. Xu and Y.-H. Quan, Factorized tensor dictionary learning for visual tensor data completion, IEEE Transactions on Multimedia, (2020), 1–14. Google Scholar |
[54] |
Y.-Y. Xu, R.-R. Hao, W.-T. Yin and Z.-X. Su,
Parallel matrix factorization for low-rank tensor completion, Inverse Problems and Imaging, 9 (2017), 601-624.
doi: 10.3934/ipi.2015.9.601. |
[55] |
J.-H. Yang, X.-L. Zhao, T.-H. Ma, M. Ding and T.-Z. Huang,
Tensor train rank minimization with hybrid smoothness for visual data recovery, Applied Mathematical Modelling, 81 (2020), 711-726.
doi: 10.1016/j.apm.2020.01.039. |
[56] |
J.-H. Yang, X.-L. Zhao, T.-H. Ma, Y. Chen, T.-Z. Huang and M. Ding,
Remote sensing image destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, Journal of Computational and Applied Mathematics, 363 (2020), 124-144.
doi: 10.1016/j.cam.2019.06.004. |
[57] |
T. Yokota, Q.-B. Zhao, C. Li and A. Cichocki,
Smooth PARAFAC decomposition for tensor completion, IEEE Transactions on Signal Processing, 64 (2016), 5423-5436.
doi: 10.1109/TSP.2016.2586759. |
[58] |
Q.-B. Zhao, L-Q. Zhang and A. Cichocki,
Bayesian CP factorization of incomplete tensors with automatic rank determination, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (2015), 1751-1763.
doi: 10.1109/TPAMI.2015.2392756. |
[59] |
X.-L. Zhao, W. Wang, T.-Y. Zeng, T.-Z. Huang and M. K. Ng,
Total variation structured total least squares method for image restoration, SIAM Journal on Scientific Computing, 35 (2013), 1304-1320.
doi: 10.1137/130915406. |
[60] |
X.-J. Zhang,
A nonconvex relaxation approach to low-rank tensor completion, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 1659-1671.
doi: 10.1109/TNNLS.2018.2872583. |
[61] |
K.-B. Zhang, X.-B. Gao, D. -C.Tao and X.-L. Li,
Single image super-resolution with non-local means and steering kernel regression, IEEE Transactions on Image Processing, 21 (2012), 4544-4556.
doi: 10.1109/TIP.2012.2208977. |
[62] |
Z. Zhang, G. Ely and S. Aeron,
Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.
doi: 10.1109/TSP.2016.2639466. |
[63] |
Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Y. Chen and W. He, Double-factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image, IEEE Transactions on Geoscience and Remote Sensing, (2020), 1–15. Google Scholar |















Image | SR | 0.1 | 0.2 | 0.3 | 0.4 | ||||||||
Method | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | |
lena | HaLRTC | 19.29 | 0.4151 | 5.52 | 23.10 | 0.6047 | 4.65 | 25.68 | 0.7311 | 8.65 | 28.00 | 0.8205 | 7.83 |
tSVD | 19.55 | 0.3500 | 87.65 | 23.33 | 0.5572 | 88.40 | 26.08 | 0.7033 | 88.80 | 28.60 | 0.8066 | 87.16 | |
SiLRTC-TT | 21.67 | 0.5954 | 39.17 | 24.80 | 0.7366 | 27.36 | 27.01 | 0.8226 | 20.32 | 28.90 | 0.8782 | 16.11 | |
TMac-TT | 24.25 | 0.6829 | 67.99 | 27.22 | 0.8097 | 65.13 | 28.87 | 0.8584 | 27.99 | 30.22 | 0.8902 | 20.38 | |
NL-TT | 26.52 | 0.8124 | 192.95 | 30.09 | 0.8970 | 121.74 | 32.02 | 0.9309 | 90.28 | 33.87 | 0.9528 | 76.41 | |
airplane | HaLRTC | 19.80 | 0.4621 | 6.80 | 23.18 | 0.6437 | 4.69 | 25.62 | 0.7614 | 3.94 | 27.97 | 0.8399 | 7.36 |
tSVD | 19.87 | 0.4196 | 84.57 | 23.30 | 0.6139 | 87.18 | 25.86 | 0.7387 | 87.63 | 28.25 | 0.8258 | 87.57 | |
SiLRTC-TT | 20.81 | 0.6072 | 32.20 | 23.42 | 0.7361 | 25.32 | 25.62 | 0.8213 | 20.04 | 27.55 | 0.8768 | 17.06 | |
TMac-TT | 22.46 | 0.6766 | 7.62 | 25.81 | 0.8105 | 60.23 | 27.67 | 0.8622 | 25.36 | 28.97 | 0.8915 | 16.93 | |
NL-TT | 24.33 | 0.7840 | 299.77 | 28.33 | 0.8929 | 109.30 | 30.29 | 0.9268 | 85.13 | 31.99 | 0.9489 | 107.19 | |
monarch | HaLRTC | 17.12 | 0.4381 | 8.20 | 19.59 | 0.6069 | 4.25 | 21.89 | 0.7404 | 3.66 | 24.20 | 0.8271 | 3.33 |
tSVD | 17.14 | 0.3372 | 91.07 | 19.98 | 0.5462 | 87.39 | 22.60 | 0.6980 | 88.03 | 25.23 | 0.8023 | 89.33 | |
SiLRTC-TT | 17.95 | 0.5784 | 38.01 | 20.32 | 0.7196 | 30.94 | 22.38 | 0.8100 | 26.44 | 24.39 | 0.8702 | 22.52 | |
TMac-TT | 19.21 | 0.6621 | 185.13 | 22.45 | 0.7912 | 104.59 | 24.86 | 0.8505 | 76.80 | 27.24 | 0.9046 | 81.50 | |
NL-TT | 22.22 | 0.8307 | 587.32 | 25.42 | 0.9140 | 379.66 | 27.95 | 0.9496 | 306.90 | 30.74 | 0.9729 | 246.85 | |
lena | HaLRTC | 17.54 | 0.2942 | 6.37 | 20.97 | 0.4651 | 7.06 | 23.59 | 0.6144 | 5.38 | 25.88 | 0.7272 | 4.01 |
tSVD | 17.88 | 0.2570 | 88.13 | 20.85 | 0.4186 | 99.70 | 23.29 | 0.5676 | 93.58 | 25.50 | 0.6857 | 90.83 | |
SiLRTC-TT | 20.90 | 0.5462 | 47.73 | 23.61 | 0.6830 | 33.84 | 25.69 | 0.7732 | 25.55 | 27.35 | 0.8353 | 19.25 | |
TMac-TT | 21.62 | 0.5629 | 15.30 | 24.60 | 0.7193 | 41.10 | 26.22 | 0.7764 | 17.78 | 27.55 | 0.8392 | 51.87 | |
NL-TT | 23.94 | 0.7351 | 223.34 | 27.45 | 0.8459 | 172.99 | 29.33 | 0.8928 | 93.35 | 31.38 | 0.9259 | 72.19 | |
airplane | HaLRTC | 17.81 | 0.3050 | 5.93 | 20.77 | 0.4847 | 6.32 | 23.15 | 0.6214 | 4.71 | 25.29 | 0.7289 | 4.14 |
tSVD | 17.97 | 0.2900 | 85.67 | 20.66 | 0.4588 | 85.71 | 22.97 | 0.5926 | 84.86 | 25.06 | 0.7029 | 89.59 | |
SiLRTC-TT | 20.20 | 0.5570 | 39.31 | 22.49 | 0.6809 | 28.91 | 24.33 | 0.7661 | 23.86 | 26.09 | 0.8298 | 20.87 | |
TMac-TT | 21.06 | 0.6169 | 35.50 | 23.15 | 0.7114 | 21.76 | 24.41 | 0.7729 | 19.68 | 26.17 | 0.8416 | 45.12 | |
NL-TT | 22.45 | 0.7255 | 175.78 | 25.25 | 0.8210 | 103.25 | 27.29 | 0.8749 | 81.90 | 29.24 | 0.9149 | 67.92 | |
monarch | HaLRTC | 16.04 | 0.3424 | 6.13 | 18.28 | 0.5031 | 6.17 | 20.12 | 0.6363 | 4.62 | 21.93 | 0.7401 | 4.03 |
tSVD | 16.33 | 0.2786 | 84.71 | 18.21 | 0.4312 | 86.92 | 19.90 | 0.5620 | 115.32 | 21.65 | 0.6791 | 88.34 | |
SiLRTC-TT | 17.46 | 0.5472 | 110.83 | 19.48 | 0.6695 | 34.32 | 21.19 | 0.7606 | 41.57 | 22.83 | 0.8290 | 25.77 | |
TMac-TT | 15.12 | 0.3466 | 142.62 | 18.66 | 0.6710 | 144.85 | 21.74 | 0.7739 | 73.79 | 23.49 | 0.8282 | 32.73 | |
NL-TT | 18.07 | 0.6564 | 147.54 | 22.33 | 0.8462 | 142.52 | 24.53 | 0.9086 | 108.21 | 26.25 | 0.9391 | 89.87 |
Image | SR | 0.1 | 0.2 | 0.3 | 0.4 | ||||||||
Method | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | |
lena | HaLRTC | 19.29 | 0.4151 | 5.52 | 23.10 | 0.6047 | 4.65 | 25.68 | 0.7311 | 8.65 | 28.00 | 0.8205 | 7.83 |
tSVD | 19.55 | 0.3500 | 87.65 | 23.33 | 0.5572 | 88.40 | 26.08 | 0.7033 | 88.80 | 28.60 | 0.8066 | 87.16 | |
SiLRTC-TT | 21.67 | 0.5954 | 39.17 | 24.80 | 0.7366 | 27.36 | 27.01 | 0.8226 | 20.32 | 28.90 | 0.8782 | 16.11 | |
TMac-TT | 24.25 | 0.6829 | 67.99 | 27.22 | 0.8097 | 65.13 | 28.87 | 0.8584 | 27.99 | 30.22 | 0.8902 | 20.38 | |
NL-TT | 26.52 | 0.8124 | 192.95 | 30.09 | 0.8970 | 121.74 | 32.02 | 0.9309 | 90.28 | 33.87 | 0.9528 | 76.41 | |
airplane | HaLRTC | 19.80 | 0.4621 | 6.80 | 23.18 | 0.6437 | 4.69 | 25.62 | 0.7614 | 3.94 | 27.97 | 0.8399 | 7.36 |
tSVD | 19.87 | 0.4196 | 84.57 | 23.30 | 0.6139 | 87.18 | 25.86 | 0.7387 | 87.63 | 28.25 | 0.8258 | 87.57 | |
SiLRTC-TT | 20.81 | 0.6072 | 32.20 | 23.42 | 0.7361 | 25.32 | 25.62 | 0.8213 | 20.04 | 27.55 | 0.8768 | 17.06 | |
TMac-TT | 22.46 | 0.6766 | 7.62 | 25.81 | 0.8105 | 60.23 | 27.67 | 0.8622 | 25.36 | 28.97 | 0.8915 | 16.93 | |
NL-TT | 24.33 | 0.7840 | 299.77 | 28.33 | 0.8929 | 109.30 | 30.29 | 0.9268 | 85.13 | 31.99 | 0.9489 | 107.19 | |
monarch | HaLRTC | 17.12 | 0.4381 | 8.20 | 19.59 | 0.6069 | 4.25 | 21.89 | 0.7404 | 3.66 | 24.20 | 0.8271 | 3.33 |
tSVD | 17.14 | 0.3372 | 91.07 | 19.98 | 0.5462 | 87.39 | 22.60 | 0.6980 | 88.03 | 25.23 | 0.8023 | 89.33 | |
SiLRTC-TT | 17.95 | 0.5784 | 38.01 | 20.32 | 0.7196 | 30.94 | 22.38 | 0.8100 | 26.44 | 24.39 | 0.8702 | 22.52 | |
TMac-TT | 19.21 | 0.6621 | 185.13 | 22.45 | 0.7912 | 104.59 | 24.86 | 0.8505 | 76.80 | 27.24 | 0.9046 | 81.50 | |
NL-TT | 22.22 | 0.8307 | 587.32 | 25.42 | 0.9140 | 379.66 | 27.95 | 0.9496 | 306.90 | 30.74 | 0.9729 | 246.85 | |
lena | HaLRTC | 17.54 | 0.2942 | 6.37 | 20.97 | 0.4651 | 7.06 | 23.59 | 0.6144 | 5.38 | 25.88 | 0.7272 | 4.01 |
tSVD | 17.88 | 0.2570 | 88.13 | 20.85 | 0.4186 | 99.70 | 23.29 | 0.5676 | 93.58 | 25.50 | 0.6857 | 90.83 | |
SiLRTC-TT | 20.90 | 0.5462 | 47.73 | 23.61 | 0.6830 | 33.84 | 25.69 | 0.7732 | 25.55 | 27.35 | 0.8353 | 19.25 | |
TMac-TT | 21.62 | 0.5629 | 15.30 | 24.60 | 0.7193 | 41.10 | 26.22 | 0.7764 | 17.78 | 27.55 | 0.8392 | 51.87 | |
NL-TT | 23.94 | 0.7351 | 223.34 | 27.45 | 0.8459 | 172.99 | 29.33 | 0.8928 | 93.35 | 31.38 | 0.9259 | 72.19 | |
airplane | HaLRTC | 17.81 | 0.3050 | 5.93 | 20.77 | 0.4847 | 6.32 | 23.15 | 0.6214 | 4.71 | 25.29 | 0.7289 | 4.14 |
tSVD | 17.97 | 0.2900 | 85.67 | 20.66 | 0.4588 | 85.71 | 22.97 | 0.5926 | 84.86 | 25.06 | 0.7029 | 89.59 | |
SiLRTC-TT | 20.20 | 0.5570 | 39.31 | 22.49 | 0.6809 | 28.91 | 24.33 | 0.7661 | 23.86 | 26.09 | 0.8298 | 20.87 | |
TMac-TT | 21.06 | 0.6169 | 35.50 | 23.15 | 0.7114 | 21.76 | 24.41 | 0.7729 | 19.68 | 26.17 | 0.8416 | 45.12 | |
NL-TT | 22.45 | 0.7255 | 175.78 | 25.25 | 0.8210 | 103.25 | 27.29 | 0.8749 | 81.90 | 29.24 | 0.9149 | 67.92 | |
monarch | HaLRTC | 16.04 | 0.3424 | 6.13 | 18.28 | 0.5031 | 6.17 | 20.12 | 0.6363 | 4.62 | 21.93 | 0.7401 | 4.03 |
tSVD | 16.33 | 0.2786 | 84.71 | 18.21 | 0.4312 | 86.92 | 19.90 | 0.5620 | 115.32 | 21.65 | 0.6791 | 88.34 | |
SiLRTC-TT | 17.46 | 0.5472 | 110.83 | 19.48 | 0.6695 | 34.32 | 21.19 | 0.7606 | 41.57 | 22.83 | 0.8290 | 25.77 | |
TMac-TT | 15.12 | 0.3466 | 142.62 | 18.66 | 0.6710 | 144.85 | 21.74 | 0.7739 | 73.79 | 23.49 | 0.8282 | 32.73 | |
NL-TT | 18.07 | 0.6564 | 147.54 | 22.33 | 0.8462 | 142.52 | 24.53 | 0.9086 | 108.21 | 26.25 | 0.9391 | 89.87 |
Method | HaLRTC | tSVD | SiLRTC-TT | TMac-TT | NL-TT | ||||||||||
Image | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time |
house | 36.44 | 0.9707 | 6.98 | 36.14 | 0.9681 | 86.86 | 38.52 | 0.9793 | 14.05 | 38.03 | 0.9740 | 11.93 | 45.34 | 0.9906 | 26.46 |
facade | 12.95 | 0.5681 | 0.12 | 12.95 | 0.5681 | 83.16 | 28.14 | 0.9062 | 28.01 | 27.50 | 0.8947 | 9.24 | 29.60 | 0.9357 | 416.18 |
sailboat | 26.49 | 0.8700 | 4.63 | 26.69 | 0.8696 | 86.10 | 26.53 | 0.8838 | 39.29 | 26.40 | 0.8995 | 8.44 | 27.86 | 0.9370 | 171.55 |
barbara | 32.44 | 0.9580 | 4.83 | 32.44 | 0.9579 | 86.28 | 33.99 | 0.9681 | 20.24 | 33.29 | 0.9654 | 6.87 | 37.56 | 0.9867 | 40.36 |
peppers | 31.64 | 0.9595 | 2.22 | 31.53 | 0.9551 | 85.85 | 32.59 | 0.9676 | 24.55 | 32.77 | 0.9651 | 9.27 | 36.33 | 0.9862 | 46.86 |
Average | 27.99 | 0.8653 | 3.76 | 27.95 | 0.8638 | 85.65 | 31.95 | 0.9410 | 25.23 | 31.60 | 0.9397 | 9.15 | 35.34 | 0.9672 | 140.28 |
Method | HaLRTC | tSVD | SiLRTC-TT | TMac-TT | NL-TT | ||||||||||
Image | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time |
house | 36.44 | 0.9707 | 6.98 | 36.14 | 0.9681 | 86.86 | 38.52 | 0.9793 | 14.05 | 38.03 | 0.9740 | 11.93 | 45.34 | 0.9906 | 26.46 |
facade | 12.95 | 0.5681 | 0.12 | 12.95 | 0.5681 | 83.16 | 28.14 | 0.9062 | 28.01 | 27.50 | 0.8947 | 9.24 | 29.60 | 0.9357 | 416.18 |
sailboat | 26.49 | 0.8700 | 4.63 | 26.69 | 0.8696 | 86.10 | 26.53 | 0.8838 | 39.29 | 26.40 | 0.8995 | 8.44 | 27.86 | 0.9370 | 171.55 |
barbara | 32.44 | 0.9580 | 4.83 | 32.44 | 0.9579 | 86.28 | 33.99 | 0.9681 | 20.24 | 33.29 | 0.9654 | 6.87 | 37.56 | 0.9867 | 40.36 |
peppers | 31.64 | 0.9595 | 2.22 | 31.53 | 0.9551 | 85.85 | 32.59 | 0.9676 | 24.55 | 32.77 | 0.9651 | 9.27 | 36.33 | 0.9862 | 46.86 |
Average | 27.99 | 0.8653 | 3.76 | 27.95 | 0.8638 | 85.65 | 31.95 | 0.9410 | 25.23 | 31.60 | 0.9397 | 9.15 | 35.34 | 0.9672 | 140.28 |
Image | SR | 0.05 | 0.1 | 0.2 | ||||||
Method | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | |
toy | HaLRTC | 20.14 | 0.6519 | 8.42 | 23.99 | 0.7790 | 6.69 | 28.91 | 0.8994 | 7.27 |
tSVD | 25.89 | 0.7680 | 264.95 | 30.34 | 0.8844 | 271.40 | 36.57 | 0.9602 | 300.93 | |
SiLRTC-TT | 22.36 | 0.7138 | 379.68 | 25.81 | 0.8392 | 188.36 | 30.44 | 0.9433 | 513.80 | |
TMac-TT | 27.28 | 0.8329 | 232.52 | 32.37 | 0.9317 | 143.12 | 35.74 | 0.9669 | 50.91 | |
NL-TT | 29.58 | 0.9243 | 1414.34 | 34.44 | 0.9730 | 803.33 | 38.72 | 0.9899 | 557.72 | |
feathers | HaLRTC | 20.66 | 0.6422 | 9.96 | 24.26 | 0.7720 | 14.14 | 28.81 | 0.8876 | 11.07 |
tSVD | 25.15 | 0.6886 | 274.69 | 29.29 | 0.8266 | 340.60 | 34.82 | 0.9265 | 264.27 | |
SiLRTC-TT | 22.86 | 0.7196 | 247.87 | 26.32 | 0.8417 | 232.09 | 31.11 | 0.9411 | 374.05 | |
TMac-TT | 27.29 | 0.7611 | 58.00 | 32.12 | 0.9190 | 216.36 | 36.63 | 0.9631 | 62.90 | |
NL-TT | 29.61 | 0.9102 | 1080.65 | 34.76 | 0.9699 | 860.40 | 39.56 | 0.9879 | 607.91 | |
superballs | HaLRTC | 23.28 | 0.7661 | 20.48 | 28.63 | 0.8621 | 9.71 | 34.10 | 0.9426 | 11.93 |
tSVD | 28.24 | 0.7636 | 267.41 | 32.39 | 0.8663 | 270.40 | 38.20 | 0.9564 | 270.92 | |
SiLRTC-TT | 26.27 | 0.8290 | 289.90 | 29.79 | 0.9087 | 157.46 | 34.03 | 0.9651 | 379.94 | |
TMac-TT | 29.97 | 0.8343 | 60.71 | 33.90 | 0.9346 | 63.73 | 40.19 | 0.9803 | 109.14 | |
NL-TT | 32.93 | 0.9507 | 1150.35 | 37.25 | 0.9812 | 666.11 | 42.67 | 0.9939 | 409.49 |
Image | SR | 0.05 | 0.1 | 0.2 | ||||||
Method | PSNR | SSIM | Time | PSNR | SSIM | Time | PSNR | SSIM | Time | |
toy | HaLRTC | 20.14 | 0.6519 | 8.42 | 23.99 | 0.7790 | 6.69 | 28.91 | 0.8994 | 7.27 |
tSVD | 25.89 | 0.7680 | 264.95 | 30.34 | 0.8844 | 271.40 | 36.57 | 0.9602 | 300.93 | |
SiLRTC-TT | 22.36 | 0.7138 | 379.68 | 25.81 | 0.8392 | 188.36 | 30.44 | 0.9433 | 513.80 | |
TMac-TT | 27.28 | 0.8329 | 232.52 | 32.37 | 0.9317 | 143.12 | 35.74 | 0.9669 | 50.91 | |
NL-TT | 29.58 | 0.9243 | 1414.34 | 34.44 | 0.9730 | 803.33 | 38.72 | 0.9899 | 557.72 | |
feathers | HaLRTC | 20.66 | 0.6422 | 9.96 | 24.26 | 0.7720 | 14.14 | 28.81 | 0.8876 | 11.07 |
tSVD | 25.15 | 0.6886 | 274.69 | 29.29 | 0.8266 | 340.60 | 34.82 | 0.9265 | 264.27 | |
SiLRTC-TT | 22.86 | 0.7196 | 247.87 | 26.32 | 0.8417 | 232.09 | 31.11 | 0.9411 | 374.05 | |
TMac-TT | 27.29 | 0.7611 | 58.00 | 32.12 | 0.9190 | 216.36 | 36.63 | 0.9631 | 62.90 | |
NL-TT | 29.61 | 0.9102 | 1080.65 | 34.76 | 0.9699 | 860.40 | 39.56 | 0.9879 | 607.91 | |
superballs | HaLRTC | 23.28 | 0.7661 | 20.48 | 28.63 | 0.8621 | 9.71 | 34.10 | 0.9426 | 11.93 |
tSVD | 28.24 | 0.7636 | 267.41 | 32.39 | 0.8663 | 270.40 | 38.20 | 0.9564 | 270.92 | |
SiLRTC-TT | 26.27 | 0.8290 | 289.90 | 29.79 | 0.9087 | 157.46 | 34.03 | 0.9651 | 379.94 | |
TMac-TT | 29.97 | 0.8343 | 60.71 | 33.90 | 0.9346 | 63.73 | 40.19 | 0.9803 | 109.14 | |
NL-TT | 32.93 | 0.9507 | 1150.35 | 37.25 | 0.9812 | 666.11 | 42.67 | 0.9939 | 409.49 |
Image | SR | 0.1 | 0.2 | 0.3 | 0.4 | ||||
Method | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
lena | LDMM | 22.20 | 0.6202 | 26.52 | 0.7944 | 27.74 | 0.8457 | 29.95 | 0.8879 |
WNLL | 26.24 | 0.8043 | 28.08 | 0.8534 | 29.29 | 0.8855 | 30.35 | 0.9071 | |
MLR | 26.47 | 0.8052 | 29.03 | 0.8747 | 30.74 | 0.9119 | 32.14 | 0.9333 | |
NL-TT | 26.52 | 0.8124 | 30.09 | 0.8970 | 32.02 | 0.9309 | 33.87 | 0.9528 | |
airplane | LDMM | 20.12 | 0.6230 | 24.03 | 0.7940 | 25.88 | 0.8532 | 28.59 | 0.8988 |
WNLL | 23.75 | 0.7675 | 25.76 | 0.8264 | 27.00 | 0.8629 | 28.03 | 0.8891 | |
MLR | 24.14 | 0.7750 | 26.78 | 0.8595 | 28.62 | 0.9015 | 29.92 | 0.9260 | |
NL-TT | 24.33 | 0.7840 | 28.33 | 0.8929 | 30.29 | 0.9268 | 31.99 | 0.9489 | |
monarch | LDMM | 18.61 | 0.6196 | 19.01 | 0.6463 | 22.34 | 0.8515 | 25.55 | 0.9176 |
WNLL | 20.54 | 0.7584 | 22.61 | 0.8262 | 23.78 | 0.8619 | 24.93 | 0.8916 | |
MLR | 20.95 | 0.8030 | 23.73 | 0.8884 | 25.76 | 0.9291 | 27.48 | 0.9525 | |
NL-TT | 22.22 | 0.8307 | 25.42 | 0.9140 | 27.95 | 0.9496 | 30.74 | 0.9729 |
Image | SR | 0.1 | 0.2 | 0.3 | 0.4 | ||||
Method | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
lena | LDMM | 22.20 | 0.6202 | 26.52 | 0.7944 | 27.74 | 0.8457 | 29.95 | 0.8879 |
WNLL | 26.24 | 0.8043 | 28.08 | 0.8534 | 29.29 | 0.8855 | 30.35 | 0.9071 | |
MLR | 26.47 | 0.8052 | 29.03 | 0.8747 | 30.74 | 0.9119 | 32.14 | 0.9333 | |
NL-TT | 26.52 | 0.8124 | 30.09 | 0.8970 | 32.02 | 0.9309 | 33.87 | 0.9528 | |
airplane | LDMM | 20.12 | 0.6230 | 24.03 | 0.7940 | 25.88 | 0.8532 | 28.59 | 0.8988 |
WNLL | 23.75 | 0.7675 | 25.76 | 0.8264 | 27.00 | 0.8629 | 28.03 | 0.8891 | |
MLR | 24.14 | 0.7750 | 26.78 | 0.8595 | 28.62 | 0.9015 | 29.92 | 0.9260 | |
NL-TT | 24.33 | 0.7840 | 28.33 | 0.8929 | 30.29 | 0.9268 | 31.99 | 0.9489 | |
monarch | LDMM | 18.61 | 0.6196 | 19.01 | 0.6463 | 22.34 | 0.8515 | 25.55 | 0.9176 |
WNLL | 20.54 | 0.7584 | 22.61 | 0.8262 | 23.78 | 0.8619 | 24.93 | 0.8916 | |
MLR | 20.95 | 0.8030 | 23.73 | 0.8884 | 25.76 | 0.9291 | 27.48 | 0.9525 | |
NL-TT | 22.22 | 0.8307 | 25.42 | 0.9140 | 27.95 | 0.9496 | 30.74 | 0.9729 |
[1] |
Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601 |
[2] |
Changming Song, Yun Wang. Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021017 |
[3] |
Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems & Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015 |
[4] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[5] |
Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001 |
[6] |
Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems & Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917 |
[7] |
Ke Wei, Jian-Feng Cai, Tony F. Chan, Shingyu Leung. Guarantees of riemannian optimization for low rank matrix completion. Inverse Problems & Imaging, 2020, 14 (2) : 233-265. doi: 10.3934/ipi.2020011 |
[8] |
Simon Foucart, Richard G. Lynch. Recovering low-rank matrices from binary measurements. Inverse Problems & Imaging, 2019, 13 (4) : 703-720. doi: 10.3934/ipi.2019032 |
[9] |
Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1783-1799. doi: 10.3934/jimo.2019029 |
[10] |
Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030 |
[11] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003 |
[12] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[13] |
Yun Cai, Song Li. Convergence and stability of iteratively reweighted least squares for low-rank matrix recovery. Inverse Problems & Imaging, 2017, 11 (4) : 643-661. doi: 10.3934/ipi.2017030 |
[14] |
Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247 |
[15] |
Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037 |
[16] |
Yan Gu, Nobuo Yamashita. Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 487-510. doi: 10.3934/naco.2020047 |
[17] |
Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial & Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078 |
[18] |
Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897 |
[19] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[20] |
Qun Liu, Lihua Fu, Meng Zhang, Wanjuan Zhang. Two-dimensional seismic data reconstruction using patch tensor completion. Inverse Problems & Imaging, 2020, 14 (6) : 985-1000. doi: 10.3934/ipi.2020052 |
2019 Impact Factor: 1.373
Tools
Article outline
Figures and Tables
[Back to Top]