Advanced Search
Article Contents
Article Contents

Inverse $N$-body scattering with the time-dependent hartree-fock approximation

The first author is supported by JSPS KAKENHI Grant Number 19K03617
Abstract Full Text(HTML) Related Papers Cited by
  • We consider an inverse $N$-body scattering problem of determining two potentials—an external potential acting on all particles and a pair interaction potential—from the scattering particles. This paper finds that the time-dependent Hartree-Fock approximation for a three-dimensional inverse $N$-body scattering in quantum mechanics enables us to recover the two potentials from the scattering states with high-velocity initial states. The main ingredient of mathematical analysis in this paper is based on the asymptotic analysis of the scattering operator defined in terms of a scattering solution to the Hartree-Fock equation at high energies. We show that the leading part of the asymptotic expansion of the scattering operator uniquely reconstructs the Fourier transform of the pair interaction, and the second term of the expansion uniquely reconstructs the $X$-ray transform of the external potential.

    Mathematics Subject Classification: Primary: 35R30, 35P25; Secondary: 81U40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Adachi, Y. Fujiwara and A. Ishida, On multidimensional inverse scattering in time-dependent electric fields, Inverse Problems, 29 (2013), 085012, 24pp. doi: 10.1088/0266-5611/29/8/085012.
    [2] T. Adachi, T. Kamada, M. Kazuno and K. Toratani, On multidimensional inverse scattering in an external electric field asymptotically zero in time, Inverse Problems, 27 (2011), 065006, 17pp. doi: 10.1088/0266-5611/27/6/065006.
    [3] T. Adachi and K. Maehara, On multidimensional inverse scattering for Stark Hamiltonians, J. Math. Phys., 48 (2007), 042101, 12pp. doi: 10.1063/1.2713077.
    [4] T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.
    [5] V. Enss and R. Weder, The geometrical approach to multidimensional inverse scattering, J. Math. Phys., 36 (1995), 3902-3921.  doi: 10.1063/1.530937.
    [6] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.
    [7] N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math, 120 (1998), 369-389.  doi: 10.1353/ajm.1998.0011.
    [8] N. Hayashi and T. Ozawa, Scattering theory in the weighted $l^{2} (\mathbb{R}^n)$ spaces for some schrödinger equations, Annales de l'IHP Physique Théorique, 48 (1988), 17-37. 
    [9] A. Ishida, Inverse scattering in the Stark effect, Inverse Problems, 35 (2019), 105010, 20pp. doi: 10.1088/1361-6420/ab2fec.
    [10] H. Isozaki, On the existence of solutions of time-dependent Hartree-Fock equations, Publ. Res. Inst. Math. Sci., 19 (1983), 107-115.  doi: 10.2977/prims/1195182978.
    [11] R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0559-3.
    [12] J. C. Lemm and J. Uhlig, Hartree-fock approximation for inverse many-body problems, Physical Review Letters, 84 (2000), 4517-4520.  doi: 10.1103/PhysRevLett.84.4517.
    [13] C. Lubich, From quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. doi: 10.4171/067.
    [14] K. Mochizuki, On small data scattering with cubic convolution nonlinearity, J. Math. Soc. Japan, 41 (1989), 143-160.  doi: 10.2969/jmsj/04110143.
    [15] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
    [16] R. G. Novikov, On inverse scattering for the $N$-body Schrödinger equation, J. Funct. Anal., 159 (1998), 492-536.  doi: 10.1006/jfan.1998.3324.
    [17] A. G. Ramm and  A. I. KatsevichThe Radon Transform and Local Tomography, CRC Press, Boca Raton, FL, 1996. 
    [18] W. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics (eds. L. J. A. and M. J.-P.), vol. 9 of Nato Advanced Study Institutes Series C, D. Reidel, 1974, 53–78. doi: 10.1007/978-94-010-2147-0_3.
    [19] T. Takiguchi, An inverse problem for free channel scattering, in Inverse Problems and Related Topics (Kobe, 1998), vol. 419 of Chapman & Hall/CRC Res. Notes Math., Chapman & Hall/CRC, Boca Raton, FL, 2000,165–179.
    [20] G. Uhlmann and A. Vasy, Low-energy inverse problems in three-body scattering, Inverse Problems, 18 (2002), 719-736.  doi: 10.1088/0266-5611/18/3/313.
    [21] G. Uhlmann and A. Vasy, Inverse problems in three-body scattering, in Inverse Problems: Theory and Applications (Cortona/Pisa, 2002), vol. 333 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2003,209–215. doi: 10.1090/conm/333/05965.
    [22] G. Uhlmann and A. Vasy, Inverse problems in $N$-body scattering, in Inverse Problems and Spectral Theory, vol. 348 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2004,135–154. doi: 10.1090/conm/348/06319.
    [23] G. D. Valencia and R. Weder, High-velocity estimates and inverse scattering for quantum $N$-body systems with Stark effect, J. Math. Phys., 53 (2012), 102105, 30pp. doi: 10.1063/1.4757590.
    [24] A. Vasy, Structure of the resolvent for three-body potentials, Duke Math. J., 90 (1997), 379-434.  doi: 10.1215/S0012-7094-97-09010-4.
    [25] T. Wada, Scattering theory for time-dependent Hartree-Fock type equation, Osaka J. Math., 36 (1999), 905-918. 
    [26] X. P. Wang, On the uniqueness of inverse scattering for $N$-body systems, Inverse Problems, 10 (1994), 765-784.  doi: 10.1088/0266-5611/10/3/017.
    [27] X. P. Wang, High energy asymptotics for n-body scattering matrices with arbitrary channels, Annales de l'IHP Physique Théorique, 65 (1996), 81–108.
    [28] M. Watanabe, Inverse scattering for the nonlinear Schrödinger equation with cubic convolution nonlinearity, Tokyo J. Math., 24 (2001), 59-67.  doi: 10.3836/tjm/1255958311.
    [29] M. Watanabe, Inverse scattering problem for time dependent Hartree-Fock equations in the three-body case, J. Math. Phys., 48 (2007), 053510, 9pp. doi: 10.1063/1.2732171.
    [30] M. Watanabe, A remark on inverse scattering for time dependent hartree equations, in Journal of Physics: Conference Series, 73 (2007), 012025. doi: 10.1088/1742-6596/73/1/012025.
    [31] M. Watanabe, Time-dependent method for non-linear Schrödinger equations in inverse scattering problems, J. Math. Anal. Appl., 459 (2018), 932-944.  doi: 10.1016/j.jmaa.2017.11.012.
    [32] M. Watanabe, Time-dependent methods in inverse scattering problems for the Hartree-Fock equation, J. Math. Phys., 60 (2019), 091504, 19pp. doi: 10.1063/1.5090924.
    [33] R. Weder, Multidimensional inverse scattering in an electric field, J. Funct. Anal., 139 (1996), 441-465.  doi: 10.1006/jfan.1996.0092.
    [34] R. Weder, Inverse scattering for $N$-body systems with time-dependent potentials, in Inverse Problems of Wave Propagation and Diffraction (Aix-les-Bains, 1996), vol. 486 of Lecture Notes in Phys., Springer, Berlin, 1997, 27–46. doi: 10.1007/BFb0105758.
    [35] R. Weder, Inverse scattering for the nonlinear Schrödinger equation, Comm. Partial Differential Equations, 22 (1997), 2089-2103.  doi: 10.1080/03605309708821332.
    [36] R. Weder, Multidimensional inverse problems in perturbed stratified media, J. Differential Equations, 152 (1999), 191-239.  doi: 10.1006/jdeq.1998.3509.
    [37] R. Weder, The $W_{k, p}$-continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., 208 (1999), 507-520.  doi: 10.1007/s002200050767.
    [38] R. Weder, Inverse scattering on the line for the nonlinear Klein-Gordon equation with a potential, J. Math. Anal. Appl., 252 (2000), 102-123.  doi: 10.1006/jmaa.2000.6954.
    [39] R. Weder, $L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37-68.  doi: 10.1006/jfan.1999.3507.
    [40] R. Weder, Uniqueness of inverse scattering for the nonlinear Schrödinger equation and reconstruction of the potential and the nonlinearity, in Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000), SIAM, Philadelphia, PA, 2000,631–634.
    [41] R. Weder, Inverse scattering for the non-linear Schrödinger equation: reconstruction of the potential and the non-linearity, Math. Methods Appl. Sci., 24 (2001), 245-254.  doi: 10.1002/mma.216.
    [42] R. Weder, Inverse scattering for the nonlinear Schrödinger equation. II. Reconstruction of the potential and the nonlinearity in the multidimensional case, Proc. Amer. Math. Soc., 129 (2001), 3637-3645.  doi: 10.1090/S0002-9939-01-06016-6.
    [43] R. Weder, Multidimensional inverse scattering for the nonlinear Klein-Gordon equation with a potential, J. Differential Equations, 184 (2002), 62-77.  doi: 10.1006/jdeq.2001.4133.
    [44] R. Weder, The $L^p$-$L^{p'}$ estimate for the Schrödinger equation on the half-line, J. Math. Anal. Appl., 281 (2003), 233-243.  doi: 10.1016/S0022-247X(03)00093-3.
    [45] K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators. III. Even-dimensional cases $m\geq 4$, J. Math. Sci. Univ. Tokyo, 2 (1995), 311-346. 
  • 加载中

Article Metrics

HTML views(333) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint