
-
Previous Article
Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal
- IPI Home
- This Issue
-
Next Article
Imaging junctions of waveguides
The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation
1. | School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China |
This paper considers the inverse elastic wave scattering by a bounded penetrable or impenetrable scatterer. We propose a novel technique to show that the elastic obstacle can be uniquely determined by its far-field pattern associated with all incident plane waves at a fixed frequency. In the first part of this paper, we establish the mixed reciprocity relation between the far-field pattern corresponding to special point sources and the scattered field corresponding to plane waves, and the mixed reciprocity relation is the key point to show the uniqueness results. In the second part, besides the mixed reciprocity relation, a priori estimates of solution to the transmission problem with boundary data in $ [L^{\mathrm{q}}(\partial\Omega)]^{3} $ ($ 1<\mathrm{q}<2 $) is deeply investigated by the integral equation method and also we have constructed a well-posed modified static interior transmission problem on a small domain to obtain the uniqueness result.
References:
[1] |
A. Adams and J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Elsevier, Singapore, 2003. |
[2] |
J. F. Ahner and G. C. Hsiao,
A Neumann series representation for solutions to boundary value problems in dynamic elasticity, Quart. Appl. Math., 33 (1975/76), 73-80.
doi: 10.1090/qam/449124. |
[3] |
J. F. Ahner and G. C. Hsiao,
On the two-dimensional exterior boundary-value problems of elasticity, Siam J. Appl. Math., 31 (1976), 677-685.
doi: 10.1137/0131060. |
[4] |
K. A. Anagnostopoulos and A. Charalambopoulos,
The linear sampling method for the transmission problem in 2D anisotropic elasticity, Inverse Problems, 22 (2006), 553-577.
doi: 10.1088/0266-5611/22/2/011. |
[5] |
T. Arens,
Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.
doi: 10.1088/0266-5611/17/5/314. |
[6] |
A. Charalambopoulos,
On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, J. Elasticity, 67 (2002), 149-170.
doi: 10.1023/A:1023958030304. |
[7] |
A. Charalambopoulos and K. A. Anagnostopoulos,
On the spectrum of the interior transmission problem in isotropic elasticity, J. Elasticity, 90 (2008), 295-313.
doi: 10.1007/s10659-007-9146-9. |
[8] |
A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoulos, D. Gintides and K. Kiriaki,
The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2006), 27-51.
doi: 10.1088/0266-5611/23/1/002. |
[9] |
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983. |
[10] |
D. Colton and R. Kress,
Using fundamental solutions in inverse scattering, Inverse Problems, 22 (2006), 49-66.
doi: 10.1088/0266-5611/22/3/R01. |
[11] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer Nature Switzerland AG, 2019.
doi: 10.1007/978-3-030-30351-8. |
[12] |
D. Colton and B. D. Sleeman,
Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.
doi: 10.1093/imamat/31.3.253. |
[13] |
H. A. Diao, H. Y. Liu and L. Wang, On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems, Calculus of Variations and Partial Differential Equations, in press, 59 (2020), Paper No. 179, 50 pp.
doi: 10.1007/s00526-020-01830-5. |
[14] |
J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Problems, 26 (2010), 045005, 8pp.
doi: 10.1088/0266-5611/26/4/045005. |
[15] |
T. Gerlach and R. Kress,
Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems, 12 (1996), 619-625.
doi: 10.1088/0266-5611/12/5/006. |
[16] |
D. Gintides,
Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
D. Gintides and L. Midrinos,
Inverse scattering problem for a rigid scatterer or a cavity in elastodynamics, Zamm. J. Appl. Math. Mech., 91 (2011), 276-287.
doi: 10.1002/zamm.201000098. |
[18] |
D. Gintides and M. Sini,
Identification of obstacles using only the scatteres P-waves or the scattered S-waves, Inverse Probl. Imaging, 6 (2012), 39-55.
doi: 10.3934/ipi.2012.6.39. |
[19] |
D. Gintides, M. Sini and N. T. Thành,
Detection of point-like scatterers using one type of scattered elastic waves, J. Comput. Appl. Math., 236 (2012), 2137-2145.
doi: 10.1016/j.cam.2011.09.036. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer, New York, 1983.
doi: 10.1007/978-3-642-61798-0. |
[21] |
P. Hähner and G. C. Hsiao,
Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534.
doi: 10.1088/0266-5611/9/5/002. |
[22] |
G. H. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp.
doi: 10.1088/0266-5611/29/1/015009. |
[23] |
G. H. Hu, J. Z. Li and H. Y. Liu,
Recovering complex elastic scatterers by a single far-field pattern, J. Differential Equations, 257 (2014), 469-489.
doi: 10.1016/j.jde.2014.04.007. |
[24] |
M. Kar and M. Sini,
On the inverse elastic scattering by interfaces using one type of scattered waves, J. Elasticity, 118 (2015), 15-38.
doi: 10.1007/s10659-014-9474-5. |
[25] |
A. Kirsch and R. Kress,
Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), 285-299.
doi: 10.1088/0266-5611/9/2/009. |
[26] |
R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, J. Physics: Conference Series, 73 (2007), 012003.
doi: 10.1088/1742-6596/73/1/012003. |
[27] |
V. D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem: Israeli Program for Scientific Translations, 1965. |
[28] |
V. D. Kupradze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979. Google Scholar |
[29] |
J. J. Lai, H. Y. Liu, J. N. Xiao and Y. F. Xu,
The decoupling of elastic waves from a weak formulation perspective, East Asian Journal on Applied Mathematics, 9 (2019), 241-251.
doi: 10.4208/eajam.080818.121018. |
[30] |
P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967. |
[31] |
H. Y. Liu and J. N. Xiao,
Decoupling elastic waves and its applications, J. Differential Equations, 263 (2017), 4442-4480.
doi: 10.1016/j.jde.2017.05.022. |
[32] |
H. Y. Liu and J. Zou,
Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[33] |
X. D. Liu and B. Zhang,
Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.
doi: 10.1137/090777578. |
[34] |
X. D. Liu and B. Zhang,
Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium, Acta Math. Sci., 32B (2012), 1281-1297.
doi: 10.1016/S0252-9602(12)60099-X. |
[35] |
X. D. Liu, B. Zhang and G. H. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems, 26 (2010), 015002, 14pp.
doi: 10.1088/0266-5611/26/1/015002. |
[36] |
P. A. Martin,
On the scattering of elastic waves by an elastic inclusion in two dimensions, Quar. J. Mech. Appl. Math., 43 (1990), 275-291.
doi: 10.1093/qjmam/43.3.275. |
[37] |
R. Potthast,
A point source method for inverse acoustic and electromagnetic obstacle scattering problems, IMA J. Appl. Math., 61 (1998), 119-140.
doi: 10.1093/imamat/61.2.119. |
[38] |
R. Potthast,
On the convergence of a new Newton-type method in inverse scattering, Inverse Problems, 17 (2001), 1419-1434.
doi: 10.1088/0266-5611/17/5/312. |
[39] |
F. L. Qu, J. Q. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8pp.
doi: 10.1088/1361-6420/aa9c26. |
[40] |
A. G. Ramm,
New method for proving uniqueness theorems for obstacle inverse scattering problems, Appl. Math. Lett., 6 (1993), 19-21.
doi: 10.1016/0893-9659(93)90071-T. |
[41] |
A. G. Ramm,
Research anouncement uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains, Appl. Anal., 59 (1995), 337-383.
doi: 10.1080/00036819508840411. |
[42] |
L. Rondi, E. Sincich and M. Sini, Stable determination of a rigid scatterer in elastodynamics, arXiv: 2007.06864v1. Google Scholar |
[43] |
P. Stefanov and G. Uhlmann,
Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc, 132 (2004), 1351-1354.
doi: 10.1090/S0002-9939-03-07363-5. |
[44] |
J. Q. Yang, B. Zhang and H. W. Zhang,
Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles with embedded objects, J. Differential Equations, 265 (2018), 6352-6383.
doi: 10.1016/j.jde.2018.07.033. |
[45] |
D. Y. Zhang and Y. K. Guo, Uniqueness results on phaseless inverse acoustic scattering with a reference ball, Inverse Problems, 34 (2018), 085002, 12pp.
doi: 10.1088/1361-6420/aac53c. |
show all references
References:
[1] |
A. Adams and J. F. Fournier, Sobolev Spaces, 2$^{nd}$ edition, Elsevier, Singapore, 2003. |
[2] |
J. F. Ahner and G. C. Hsiao,
A Neumann series representation for solutions to boundary value problems in dynamic elasticity, Quart. Appl. Math., 33 (1975/76), 73-80.
doi: 10.1090/qam/449124. |
[3] |
J. F. Ahner and G. C. Hsiao,
On the two-dimensional exterior boundary-value problems of elasticity, Siam J. Appl. Math., 31 (1976), 677-685.
doi: 10.1137/0131060. |
[4] |
K. A. Anagnostopoulos and A. Charalambopoulos,
The linear sampling method for the transmission problem in 2D anisotropic elasticity, Inverse Problems, 22 (2006), 553-577.
doi: 10.1088/0266-5611/22/2/011. |
[5] |
T. Arens,
Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.
doi: 10.1088/0266-5611/17/5/314. |
[6] |
A. Charalambopoulos,
On the interior transmission problem in nondissipative, inhomogeneous, anisotropic elasticity, J. Elasticity, 67 (2002), 149-170.
doi: 10.1023/A:1023958030304. |
[7] |
A. Charalambopoulos and K. A. Anagnostopoulos,
On the spectrum of the interior transmission problem in isotropic elasticity, J. Elasticity, 90 (2008), 295-313.
doi: 10.1007/s10659-007-9146-9. |
[8] |
A. Charalambopoulos, A. Kirsch, K. A. Anagnostopoulos, D. Gintides and K. Kiriaki,
The factorization method in inverse elastic scattering from penetrable bodies, Inverse Problems, 23 (2006), 27-51.
doi: 10.1088/0266-5611/23/1/002. |
[9] |
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983. |
[10] |
D. Colton and R. Kress,
Using fundamental solutions in inverse scattering, Inverse Problems, 22 (2006), 49-66.
doi: 10.1088/0266-5611/22/3/R01. |
[11] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer Nature Switzerland AG, 2019.
doi: 10.1007/978-3-030-30351-8. |
[12] |
D. Colton and B. D. Sleeman,
Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.
doi: 10.1093/imamat/31.3.253. |
[13] |
H. A. Diao, H. Y. Liu and L. Wang, On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems, Calculus of Variations and Partial Differential Equations, in press, 59 (2020), Paper No. 179, 50 pp.
doi: 10.1007/s00526-020-01830-5. |
[14] |
J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Problems, 26 (2010), 045005, 8pp.
doi: 10.1088/0266-5611/26/4/045005. |
[15] |
T. Gerlach and R. Kress,
Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems, 12 (1996), 619-625.
doi: 10.1088/0266-5611/12/5/006. |
[16] |
D. Gintides,
Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
D. Gintides and L. Midrinos,
Inverse scattering problem for a rigid scatterer or a cavity in elastodynamics, Zamm. J. Appl. Math. Mech., 91 (2011), 276-287.
doi: 10.1002/zamm.201000098. |
[18] |
D. Gintides and M. Sini,
Identification of obstacles using only the scatteres P-waves or the scattered S-waves, Inverse Probl. Imaging, 6 (2012), 39-55.
doi: 10.3934/ipi.2012.6.39. |
[19] |
D. Gintides, M. Sini and N. T. Thành,
Detection of point-like scatterers using one type of scattered elastic waves, J. Comput. Appl. Math., 236 (2012), 2137-2145.
doi: 10.1016/j.cam.2011.09.036. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer, New York, 1983.
doi: 10.1007/978-3-642-61798-0. |
[21] |
P. Hähner and G. C. Hsiao,
Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Problems, 9 (1993), 525-534.
doi: 10.1088/0266-5611/9/5/002. |
[22] |
G. H. Hu, A. Kirsch and M. Sini, Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Problems, 29 (2013), 015009, 21pp.
doi: 10.1088/0266-5611/29/1/015009. |
[23] |
G. H. Hu, J. Z. Li and H. Y. Liu,
Recovering complex elastic scatterers by a single far-field pattern, J. Differential Equations, 257 (2014), 469-489.
doi: 10.1016/j.jde.2014.04.007. |
[24] |
M. Kar and M. Sini,
On the inverse elastic scattering by interfaces using one type of scattered waves, J. Elasticity, 118 (2015), 15-38.
doi: 10.1007/s10659-014-9474-5. |
[25] |
A. Kirsch and R. Kress,
Uniqueness in inverse obstacle scattering, Inverse Problems, 9 (1993), 285-299.
doi: 10.1088/0266-5611/9/2/009. |
[26] |
R. Kress, Uniqueness and numerical methods in inverse obstacle scattering, J. Physics: Conference Series, 73 (2007), 012003.
doi: 10.1088/1742-6596/73/1/012003. |
[27] |
V. D. Kupradze, Potential Methods in the Theory of Elasticity, Jerusalem: Israeli Program for Scientific Translations, 1965. |
[28] |
V. D. Kupradze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, Amsterdam: North-Holland, 1979. Google Scholar |
[29] |
J. J. Lai, H. Y. Liu, J. N. Xiao and Y. F. Xu,
The decoupling of elastic waves from a weak formulation perspective, East Asian Journal on Applied Mathematics, 9 (2019), 241-251.
doi: 10.4208/eajam.080818.121018. |
[30] |
P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967. |
[31] |
H. Y. Liu and J. N. Xiao,
Decoupling elastic waves and its applications, J. Differential Equations, 263 (2017), 4442-4480.
doi: 10.1016/j.jde.2017.05.022. |
[32] |
H. Y. Liu and J. Zou,
Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[33] |
X. D. Liu and B. Zhang,
Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.
doi: 10.1137/090777578. |
[34] |
X. D. Liu and B. Zhang,
Inverse scattering by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium, Acta Math. Sci., 32B (2012), 1281-1297.
doi: 10.1016/S0252-9602(12)60099-X. |
[35] |
X. D. Liu, B. Zhang and G. H. Hu, Uniqueness in the inverse scattering problem in a piecewise homogeneous medium, Inverse Problems, 26 (2010), 015002, 14pp.
doi: 10.1088/0266-5611/26/1/015002. |
[36] |
P. A. Martin,
On the scattering of elastic waves by an elastic inclusion in two dimensions, Quar. J. Mech. Appl. Math., 43 (1990), 275-291.
doi: 10.1093/qjmam/43.3.275. |
[37] |
R. Potthast,
A point source method for inverse acoustic and electromagnetic obstacle scattering problems, IMA J. Appl. Math., 61 (1998), 119-140.
doi: 10.1093/imamat/61.2.119. |
[38] |
R. Potthast,
On the convergence of a new Newton-type method in inverse scattering, Inverse Problems, 17 (2001), 1419-1434.
doi: 10.1088/0266-5611/17/5/312. |
[39] |
F. L. Qu, J. Q. Yang and B. Zhang, Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34 (2018), 015002, 8pp.
doi: 10.1088/1361-6420/aa9c26. |
[40] |
A. G. Ramm,
New method for proving uniqueness theorems for obstacle inverse scattering problems, Appl. Math. Lett., 6 (1993), 19-21.
doi: 10.1016/0893-9659(93)90071-T. |
[41] |
A. G. Ramm,
Research anouncement uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains, Appl. Anal., 59 (1995), 337-383.
doi: 10.1080/00036819508840411. |
[42] |
L. Rondi, E. Sincich and M. Sini, Stable determination of a rigid scatterer in elastodynamics, arXiv: 2007.06864v1. Google Scholar |
[43] |
P. Stefanov and G. Uhlmann,
Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc, 132 (2004), 1351-1354.
doi: 10.1090/S0002-9939-03-07363-5. |
[44] |
J. Q. Yang, B. Zhang and H. W. Zhang,
Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles with embedded objects, J. Differential Equations, 265 (2018), 6352-6383.
doi: 10.1016/j.jde.2018.07.033. |
[45] |
D. Y. Zhang and Y. K. Guo, Uniqueness results on phaseless inverse acoustic scattering with a reference ball, Inverse Problems, 34 (2018), 085002, 12pp.
doi: 10.1088/1361-6420/aac53c. |


[1] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[2] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[3] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[4] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[5] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[6] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[7] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[8] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[9] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[10] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[11] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[12] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[13] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[14] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[15] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[16] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[17] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[18] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[19] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[20] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
2019 Impact Factor: 1.373
Tools
Article outline
Figures and Tables
[Back to Top]