June  2021, 15(3): 555-597. doi: 10.3934/ipi.2021005

Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies

RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040, Linz, Austria

* Corresponding author: Ahcene Ghandriche

± This author is supported by the Austrian Science Fund (FWF): P 30756-NBL.
This author is partially supported by the Austrian Science Fund (FWF): P 30756-NBL

Received  June 2020 Revised  October 2020 Published  June 2021 Early access  December 2020

We analyze mathematically the acoustic imaging modality using bubbles as contrast agents. These bubbles are modeled by mass densities and bulk moduli enjoying contrasting scales. These contrasting scales allow them to resonate at certain incident frequencies. We consider two types of such contrasts. In the first one, the bubbles are light with small bulk modulus, as compared to the ones of the background, so that they generate the Minnaert resonance (corresponding to a local surface wave). In the second one, the bubbles have moderate mass density but still with small bulk modulus so that they generate a sequence of resonances (corresponding to local body waves).

We propose to use as measurements the far-fields collected before and after injecting a bubble, set at a given location point in the target domain, generated at a band of incident frequencies and at a fixed single backscattering direction. Then, we scan the target domain with such bubbles and collect the corresponding far-fields. The goal is to reconstruct both the, variable, mass density and bulk modulus of the background in the target region.

1.We show that, for each fixed used bubble, the contrasted far-fields reach their maximum value at, incident, frequencies close to the Minnaert resonance (or the body-wave resonances depending on the types of bubbles we use). Hence, we can reconstruct this resonance from our data. The explicit dependence of these resonances in terms of the background mass density of the background allows us to recover it, i.e. the mass density, in a straightforward way.

2.In addition, this measured contrasted far-fields allow us to recover the total field at the location points of the bubbles (i.e. the total field in the absence of the bubbles). A numerical differentiation argument, for instance, allows us to recover the bulk modulus of the targeted region as well.

Citation: Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems and Imaging, 2021, 15 (3) : 555-597. doi: 10.3934/ipi.2021005
References:
[1]

A. AlsaediB. AhmadD. P. ChallaM. Kirane and M. Sini, A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index, Math. Methods Appl. Sci., 39 (2016), 3607-3622.  doi: 10.1002/mma.3805.

[2]

H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, Berlin, 2008. doi: 10.1007/978-3-540-79553-7.

[3]

H. Ammari, D. P. Challa, A. P. Choudhury and M. Sini, The point-interaction approximation for the fields generated by contrasted bubbles at arbitrary fixed frequencies, Journal of Differential Equations, 267 (2019), 2104–2191. doi: 10.1016/j.jde.2019.03.010.

[4]

H. AmmariD. P. ChallaA. P. Choudhury and M. Sini, The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces, Multiscale Model. Simul., 18 (2020), 240-293.  doi: 10.1137/19M1237259.

[5]

H. AmmariA. DabrowskiB. FitzpatrickP. Millien and M. Sini, Subwavelength resonant dielectric nanoparticules with high refractive indices, Mathematical Methods in the Applied Sciences, 42 (2019), 6567-6579.  doi: 10.1002/mma.5760.

[6]

H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Minnaert resonances for acoustic waves in bubbly media, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1975–1998. doi: 10.1016/j.anihpc.2018.03.007.

[7]

H. AmmariB. FitzpatrickH. LeeS. Yu and H. Zhang, Double-negative acoustic metamaterials., Quarterly of Applied Mathematics, 77 (2019), 767-791.  doi: 10.1090/qam/1543.

[8]

H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Sub-wavelength focusing of acoustic waves in bubbly media, Proceedings of the Royal Society A., 473 (2017), 20170469, 17pp. doi: 10.1098/rspa.2017.0469.

[9]

H. Ammari and H. Zhang, Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant frequency, SIAM J. Math. Anal., 49 (2017), 3252-3276.  doi: 10.1137/16M1078574.

[10]

C. R. AndersonX. HuH. ZhangJ. TlaxcaA. E. DeclèvesR. HoughtalingK. SharmaM. LawrenceK. W. Ferrara and J. J. Rychak, Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent, Investigative Radiology, 46 (2011), 215-224.  doi: 10.1097/RLI.0b013e3182034fed.

[11]

R. CaflischM. MiksisG. Papanicolaou and L. Ting, Effective equations for wave propagation in a bubbly liquid, J. Fluid Mec., 153 (1985), 259-273. 

[12]

R. CaflischM. MiksisG. Papanicolaou and L. Ting, Wave propagation in bubbly liquids at finite volume fraction, J. Fluid Mec., 160 (1986), 1-14. 

[13]

D. P. Challa and M. Sini, Multiscale analysis of the acoustic scattering by many scatterers of impedance type, Z. Angew. Math. Phys., 67 (2016), Art. 58, 31pp. doi: 10.1007/s00033-016-0652-0.

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-030-30351-8.

[15]

G. Dassios and R. Kleinman, Low Frequency Scattering, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.

[16]

A. Ghandriche and M. Sini, Mathematical Analysis of the Photo-acoustic imaging modality using resonating dielectric nanoparticles: The 2D TM-model, arXiv: 2003.03162

[17]

T. Ilovitsh, A. Ilovitsh, J. Foiret, et al., Enhanced microbubble contrast agent oscillation following 250 kHz insonation, Sci Rep, 8 (2018), 16347. doi: 10.1038/s41598-018-34494-5.

[18]

G. C. Papanicolaou, Diffusion in Random Media, Surveys in Applied Mathematics, volume 1, Edited by J P. Keller, D W. McLaughlin and G C. Papanicolaou, Plenum Press, NewYork, 1995.

[19]

S. Qin, C. F. Caskey and K. W. Ferrara, Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering, Phys Med Biol., 54 (2009), R27. doi: 10.1088/0031-9155/54/6/R01.

[20]

E. Quaia, Microbubble ultrasound contrast agents: An update, European Radiology, 17 (2007), 1995-2008.  doi: 10.1007/s00330-007-0623-0.

[21]

T. Meklachi, S. Moskow and J. C. Schotland, Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers, J. Math. Phys., 59 (2018), 083502, 20pp. doi: 10.1063/1.5031032.

[22]

A. Song, J. Li, C. Shen, X. Peng, X. Zhu, T. Chen1 and S. A. Cummer, Broadband high-index prism for asymmetric acoustic transmission, Appl. Phys. Lett., 114 (2019), 121902.

[23]

F. Zangeneh-Nejad and R. Fleury, Acoustic analogues of high-index optical waveguide devices, Sci Rep, 8 (2018), 10401. doi: 10.1038/s41598-018-28679-1.

show all references

References:
[1]

A. AlsaediB. AhmadD. P. ChallaM. Kirane and M. Sini, A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index, Math. Methods Appl. Sci., 39 (2016), 3607-3622.  doi: 10.1002/mma.3805.

[2]

H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, Berlin, 2008. doi: 10.1007/978-3-540-79553-7.

[3]

H. Ammari, D. P. Challa, A. P. Choudhury and M. Sini, The point-interaction approximation for the fields generated by contrasted bubbles at arbitrary fixed frequencies, Journal of Differential Equations, 267 (2019), 2104–2191. doi: 10.1016/j.jde.2019.03.010.

[4]

H. AmmariD. P. ChallaA. P. Choudhury and M. Sini, The equivalent media generated by bubbles of high contrasts: Volumetric metamaterials and metasurfaces, Multiscale Model. Simul., 18 (2020), 240-293.  doi: 10.1137/19M1237259.

[5]

H. AmmariA. DabrowskiB. FitzpatrickP. Millien and M. Sini, Subwavelength resonant dielectric nanoparticules with high refractive indices, Mathematical Methods in the Applied Sciences, 42 (2019), 6567-6579.  doi: 10.1002/mma.5760.

[6]

H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Minnaert resonances for acoustic waves in bubbly media, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1975–1998. doi: 10.1016/j.anihpc.2018.03.007.

[7]

H. AmmariB. FitzpatrickH. LeeS. Yu and H. Zhang, Double-negative acoustic metamaterials., Quarterly of Applied Mathematics, 77 (2019), 767-791.  doi: 10.1090/qam/1543.

[8]

H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee and H. Zhang, Sub-wavelength focusing of acoustic waves in bubbly media, Proceedings of the Royal Society A., 473 (2017), 20170469, 17pp. doi: 10.1098/rspa.2017.0469.

[9]

H. Ammari and H. Zhang, Effective medium theory for acoustic waves in bubbly fluids near Minnaert resonant frequency, SIAM J. Math. Anal., 49 (2017), 3252-3276.  doi: 10.1137/16M1078574.

[10]

C. R. AndersonX. HuH. ZhangJ. TlaxcaA. E. DeclèvesR. HoughtalingK. SharmaM. LawrenceK. W. Ferrara and J. J. Rychak, Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent, Investigative Radiology, 46 (2011), 215-224.  doi: 10.1097/RLI.0b013e3182034fed.

[11]

R. CaflischM. MiksisG. Papanicolaou and L. Ting, Effective equations for wave propagation in a bubbly liquid, J. Fluid Mec., 153 (1985), 259-273. 

[12]

R. CaflischM. MiksisG. Papanicolaou and L. Ting, Wave propagation in bubbly liquids at finite volume fraction, J. Fluid Mec., 160 (1986), 1-14. 

[13]

D. P. Challa and M. Sini, Multiscale analysis of the acoustic scattering by many scatterers of impedance type, Z. Angew. Math. Phys., 67 (2016), Art. 58, 31pp. doi: 10.1007/s00033-016-0652-0.

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-030-30351-8.

[15]

G. Dassios and R. Kleinman, Low Frequency Scattering, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.

[16]

A. Ghandriche and M. Sini, Mathematical Analysis of the Photo-acoustic imaging modality using resonating dielectric nanoparticles: The 2D TM-model, arXiv: 2003.03162

[17]

T. Ilovitsh, A. Ilovitsh, J. Foiret, et al., Enhanced microbubble contrast agent oscillation following 250 kHz insonation, Sci Rep, 8 (2018), 16347. doi: 10.1038/s41598-018-34494-5.

[18]

G. C. Papanicolaou, Diffusion in Random Media, Surveys in Applied Mathematics, volume 1, Edited by J P. Keller, D W. McLaughlin and G C. Papanicolaou, Plenum Press, NewYork, 1995.

[19]

S. Qin, C. F. Caskey and K. W. Ferrara, Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering, Phys Med Biol., 54 (2009), R27. doi: 10.1088/0031-9155/54/6/R01.

[20]

E. Quaia, Microbubble ultrasound contrast agents: An update, European Radiology, 17 (2007), 1995-2008.  doi: 10.1007/s00330-007-0623-0.

[21]

T. Meklachi, S. Moskow and J. C. Schotland, Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers, J. Math. Phys., 59 (2018), 083502, 20pp. doi: 10.1063/1.5031032.

[22]

A. Song, J. Li, C. Shen, X. Peng, X. Zhu, T. Chen1 and S. A. Cummer, Broadband high-index prism for asymmetric acoustic transmission, Appl. Phys. Lett., 114 (2019), 121902.

[23]

F. Zangeneh-Nejad and R. Fleury, Acoustic analogues of high-index optical waveguide devices, Sci Rep, 8 (2018), 10401. doi: 10.1038/s41598-018-28679-1.

[1]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems and Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[2]

Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[3]

Darryl D. Holm, Cornelia Vizman. Dual pairs in resonances. Journal of Geometric Mechanics, 2012, 4 (3) : 297-311. doi: 10.3934/jgm.2012.4.297

[4]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[5]

Kazuyuki Yagasaki. Degenerate resonances in forced oscillators. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 423-438. doi: 10.3934/dcdsb.2003.3.423

[6]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[7]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[8]

Tomoki Ohsawa. Dual pairs and regularization of Kummer shapes in resonances. Journal of Geometric Mechanics, 2019, 11 (2) : 225-238. doi: 10.3934/jgm.2019012

[9]

Carlangelo Liverani. Fredholm determinants, Anosov maps and Ruelle resonances. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1203-1215. doi: 10.3934/dcds.2005.13.1203

[10]

Frédéric Faure. Prequantum chaos: Resonances of the prequantum cat map. Journal of Modern Dynamics, 2007, 1 (2) : 255-285. doi: 10.3934/jmd.2007.1.255

[11]

Fritz Gesztesy, Roger Nichols. On absence of threshold resonances for Schrödinger and Dirac operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3427-3460. doi: 10.3934/dcdss.2020243

[12]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems and Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[13]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[14]

Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940

[15]

Yang Liu, Wenke Li. A family of potential wells for a wave equation. Electronic Research Archive, 2020, 28 (2) : 807-820. doi: 10.3934/era.2020041

[16]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[17]

Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 89-108. doi: 10.3934/dcds.2009.25.89

[18]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[19]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[20]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (240)
  • HTML views (203)
  • Cited by (0)

[Back to Top]