• Previous Article
    Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net
  • IPI Home
  • This Issue
  • Next Article
    Inverse $N$-body scattering with the time-dependent hartree-fock approximation
doi: 10.3934/ipi.2021006

A regularization operator for source identification for elliptic PDEs

Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway

* Corresponding author: B. F. Nielsen

Received  August 2020 Revised  October 2020 Published  December 2020

Fund Project: This work was supported by The Research Council of Norway, project number 239070

We study a source identification problem for a prototypical elliptic PDE from Dirichlet boundary data. This problem is ill-posed, and the involved forward operator has a significant nullspace. Standard Tikhonov regularization yields solutions which approach the minimum $ L^2 $-norm least-squares solution as the regularization parameter tends to zero. We show that this approach 'always' suggests that the unknown local source is very close to the boundary of the domain of the PDE, regardless of the position of the true local source.

We propose an alternative regularization procedure, realized in terms of a novel regularization operator, which is better suited for identifying local sources positioned anywhere in the domain of the PDE. Our approach is motivated by the classical theory for Tikhonov regularization and yields a standard quadratic optimization problem. Since the new methodology is derived for an abstract operator equation, it can be applied to many other source identification problems. This paper contains several numerical experiments and an analysis of the new methodology.

Citation: Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, doi: 10.3934/ipi.2021006
References:
[1]

B. Abdelaziz, A. El Badia and A. El Hajj, Direct algorithms for solving some inverse source problems in 2D elliptic equations, Inverse Problems, 31 (2015), 105002, 26pp. doi: 10.1088/0266-5611/31/10/105002.  Google Scholar

[2]

C. J. S. AlvesJ. B. Abdallah and M. Jaoua, Recovery of cracks using a point-source reciprocity gap function, Inverse Problems in Science and Engineering, 12 (2004), 519-534.  doi: 10.1080/1068276042000219912.  Google Scholar

[3]

S. BailletJ. C. Mosher and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal Processing Magazine, 18 (2001), 14-30.  doi: 10.1109/79.962275.  Google Scholar

[4]

A. Ben AbdaF. Ben HassenJ. Leblond and M. Mahjoub, Sources recovery from boundary data: A model related to electroencephalography, Mathematical and Computer Modelling, 49 (2009), 2213-2223.  doi: 10.1016/j.mcm.2008.07.016.  Google Scholar

[5]

X. ChengR. Gong and W. Han, A new Kohn-Vogelius type formulation for inverse source problems, Inverse Problems and Imaging, 9 (2015), 1051-1067.  doi: 10.3934/ipi.2015.9.1051.  Google Scholar

[6]

A. El Badia and T. Ha-Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883-891.  doi: 10.1088/0266-5611/14/4/008.  Google Scholar

[7]

A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000), 651-663.  doi: 10.1088/0266-5611/16/3/308.  Google Scholar

[8]

R. Elul, The genesis of the EEG, International Review of Neurobiology, 15 (1972), 227-272.  doi: 10.1016/S0074-7742(08)60333-5.  Google Scholar

[9]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996.  Google Scholar

[10]

M. Hanke and W. Rundell, On rational approximation methods for inverse source problems, Inverse Problems and Imaging, 5 (2011), 185-202.  doi: 10.3934/ipi.2011.5.185.  Google Scholar

[11]

F. Hettlich and W. Rundell, Iterative methods for the reconstruction of an inverse potential problem, Inverse Problems, 12 (1996), 251-266.  doi: 10.1088/0266-5611/12/3/006.  Google Scholar

[12]

M. HinzeB. Hofmann and T. N. T. Quyen, A regularization approach for an inverse source problem in elliptic systems from single Cauchy data, Numerical Functional Analysis and Optimization, 40 (2019), 1080-1112.  doi: 10.1080/01630563.2019.1596953.  Google Scholar

[13]

V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006.  Google Scholar

[14]

K. Kunisch and X. Pan, Estimation of interfaces from boundary measurements, SIAM J. Control Optim., 32 (1994), 1643-1674.  doi: 10.1137/S0363012992226338.  Google Scholar

[15]

B. F. NielsenM. Lysaker and P. Grøttum, Computing ischemic regions in the heart with the bidomain model; first steps towards validation, IEEE Transactions on Medical Imaging, 32 (2013), 1085-1096.  doi: 10.1109/TMI.2013.2254123.  Google Scholar

[16]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, 1993.  Google Scholar

[17]

W. Ring, Identification of a core from boundary data, SIAM Journal on Applied Mathematics, 55 (1995), 677-706.  doi: 10.1137/S0036139993256308.  Google Scholar

[18]

S. J. Song and J. G. Huang, Solving an inverse problem from bioluminescence tomography by minimizing an energy-like functional, J. Comput. Anal. Appl., 14 (2012), 544-558.   Google Scholar

[19]

D. WangR. M. KirbyR. S. MacLeod and C. R. Johnson, Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution, Journal of Computational Physics, 250 (2013), 403-424.  doi: 10.1016/j.jcp.2013.05.027.  Google Scholar

[20]

X. Wang, Y. Guo, D. Zhang and H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33 (2017), 035001, 18pp. doi: 10.1088/1361-6420/aa573c.  Google Scholar

[21]

D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 094001, 21pp. doi: 10.1088/1361-6420/aaccda.  Google Scholar

[22]

D. ZhangY. GuoJ. Li and H. Liu, Locating multiple multipolar acoustic sources using the direct sampling method, Communications in Computational Physics, 25 (2019), 1328-1356.  doi: 10.4208/cicp.oa-2018-0020.  Google Scholar

show all references

References:
[1]

B. Abdelaziz, A. El Badia and A. El Hajj, Direct algorithms for solving some inverse source problems in 2D elliptic equations, Inverse Problems, 31 (2015), 105002, 26pp. doi: 10.1088/0266-5611/31/10/105002.  Google Scholar

[2]

C. J. S. AlvesJ. B. Abdallah and M. Jaoua, Recovery of cracks using a point-source reciprocity gap function, Inverse Problems in Science and Engineering, 12 (2004), 519-534.  doi: 10.1080/1068276042000219912.  Google Scholar

[3]

S. BailletJ. C. Mosher and R. M. Leahy, Electromagnetic brain mapping, IEEE Signal Processing Magazine, 18 (2001), 14-30.  doi: 10.1109/79.962275.  Google Scholar

[4]

A. Ben AbdaF. Ben HassenJ. Leblond and M. Mahjoub, Sources recovery from boundary data: A model related to electroencephalography, Mathematical and Computer Modelling, 49 (2009), 2213-2223.  doi: 10.1016/j.mcm.2008.07.016.  Google Scholar

[5]

X. ChengR. Gong and W. Han, A new Kohn-Vogelius type formulation for inverse source problems, Inverse Problems and Imaging, 9 (2015), 1051-1067.  doi: 10.3934/ipi.2015.9.1051.  Google Scholar

[6]

A. El Badia and T. Ha-Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883-891.  doi: 10.1088/0266-5611/14/4/008.  Google Scholar

[7]

A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000), 651-663.  doi: 10.1088/0266-5611/16/3/308.  Google Scholar

[8]

R. Elul, The genesis of the EEG, International Review of Neurobiology, 15 (1972), 227-272.  doi: 10.1016/S0074-7742(08)60333-5.  Google Scholar

[9]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996.  Google Scholar

[10]

M. Hanke and W. Rundell, On rational approximation methods for inverse source problems, Inverse Problems and Imaging, 5 (2011), 185-202.  doi: 10.3934/ipi.2011.5.185.  Google Scholar

[11]

F. Hettlich and W. Rundell, Iterative methods for the reconstruction of an inverse potential problem, Inverse Problems, 12 (1996), 251-266.  doi: 10.1088/0266-5611/12/3/006.  Google Scholar

[12]

M. HinzeB. Hofmann and T. N. T. Quyen, A regularization approach for an inverse source problem in elliptic systems from single Cauchy data, Numerical Functional Analysis and Optimization, 40 (2019), 1080-1112.  doi: 10.1080/01630563.2019.1596953.  Google Scholar

[13]

V. Isakov, Inverse Problems for Partial Differential Equations, Second edition. Applied Mathematical Sciences, 127. Springer, New York, 2006.  Google Scholar

[14]

K. Kunisch and X. Pan, Estimation of interfaces from boundary measurements, SIAM J. Control Optim., 32 (1994), 1643-1674.  doi: 10.1137/S0363012992226338.  Google Scholar

[15]

B. F. NielsenM. Lysaker and P. Grøttum, Computing ischemic regions in the heart with the bidomain model; first steps towards validation, IEEE Transactions on Medical Imaging, 32 (2013), 1085-1096.  doi: 10.1109/TMI.2013.2254123.  Google Scholar

[16]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer-Verlag, 1993.  Google Scholar

[17]

W. Ring, Identification of a core from boundary data, SIAM Journal on Applied Mathematics, 55 (1995), 677-706.  doi: 10.1137/S0036139993256308.  Google Scholar

[18]

S. J. Song and J. G. Huang, Solving an inverse problem from bioluminescence tomography by minimizing an energy-like functional, J. Comput. Anal. Appl., 14 (2012), 544-558.   Google Scholar

[19]

D. WangR. M. KirbyR. S. MacLeod and C. R. Johnson, Inverse electrocardiographic source localization of ischemia: An optimization framework and finite element solution, Journal of Computational Physics, 250 (2013), 403-424.  doi: 10.1016/j.jcp.2013.05.027.  Google Scholar

[20]

X. Wang, Y. Guo, D. Zhang and H. Liu, Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Problems, 33 (2017), 035001, 18pp. doi: 10.1088/1361-6420/aa573c.  Google Scholar

[21]

D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 094001, 21pp. doi: 10.1088/1361-6420/aaccda.  Google Scholar

[22]

D. ZhangY. GuoJ. Li and H. Liu, Locating multiple multipolar acoustic sources using the direct sampling method, Communications in Computational Physics, 25 (2019), 1328-1356.  doi: 10.4208/cicp.oa-2018-0020.  Google Scholar

Figure 1.  Comparison of the true source and the inverse solution using standard Tikhonov regularization with $ \alpha = 10^{-3} $
Figure 2.  Recovered source, Example 1, with the regularization parameter $ \alpha = 10^{-3} $. The true source is depicted in panel (a) in Figure 1
Figure 3.  L-shaped domain, Example 2. Comparison of the true source and the inverse solutions, using the regularization parameter $ \alpha = 10^{-3} $
Figure 4.  Source at the boundary, Example 3. Comparison of the true source and the inverse solutions, using the regularization parameter $ \alpha = 10^{-4} $
Figure 5.  Source at the boundary, Example 3. Inverse solution computed with standard Tikhonov regularization, $ \alpha = 10^{-4} $
Figure 6.  Vector field of $ \sigma $
Figure 7.  State equation with a tensor, Example 4. Comparison of the true source and the inverse solutions, using the regularization parameter $ \alpha = 10^{-4} $
Figure 8.  Two disjoint sources, Example 5. Comparison of the true sources and the inverse solutions, using the regularization parameter $ \alpha = 10^{-3} $
Figure 9.  Three disjoint sources, Example 5. Comparison of the true sources and the inverse solutions, using the regularization parameter $ \alpha = 10^{-3} $
Figure 10.  Example 6, $ 5 \% $ and $ 20\% $ noise. The true source is shown in panel (a) in Figure 8
Figure 11.  Inhomogeneous Helmholtz equation with $ \epsilon = -1 $. Comparison of the inverse solutions, using the regularization parameter $ \alpha = 10^{-3} $. The true source is displayed in Figure 1a
Figure 12.  Inhomogeneous Helmholtz equation with $ \epsilon = -100 $. Comparison of the inverse solutions, using the regularization parameter $ \alpha = 10^{-3} $. The true source is displayed in Figure 1a
[1]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[7]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[8]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[9]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[10]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[11]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[15]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[16]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[17]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[18]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[19]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[20]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (11)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]