
-
Previous Article
A sampling type method in an electromagnetic waveguide
- IPI Home
- This Issue
-
Next Article
The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation
Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem
1. | School of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China |
2. | School of Science, East China University of Technology, Nanchang, Jiangxi, 330013, China |
In this paper, a Cauchy problem of non-homogenous stochastic heat equation is considered together with its inverse source problem, where the source term is assumed to be driven by an additive white noise. The Cauchy problem (direct problem) is to determine the displacement of random temperature field, while the considered inverse problem is to reconstruct the statistical properties of the random source, i.e. the mean and variance of the random source. It is proved constructively that the Cauchy problem has a unique mild solution, which is expressed an integral form. Then the inverse random source problem is formulated into two Fredholm integral equations of the first kind, which are typically ill-posed. To obtain stable inverse solutions, the regularized block Kaczmarz method is introduced to solve the two Fredholm integral equations. Finally, numerical experiments are given to show that the proposed method is efficient and robust for reconstructing the statistical properties of the random source.
References:
[1] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 1263-1287.
doi: 10.1137/16M1067470. |
[2] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55 (2017), 2616-2643.
doi: 10.1137/16M1088922. |
[3] |
G. Bao, S. Chow, P. Li and H. Zhou,
An inverse random source problem for the Helmholtz equation, Math. Comput., 83 (2014), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5. |
[4] |
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2012), 015006, 16pp.
doi: 10.1088/0266-5611/29/1/015006. |
[5] |
F. Dou, C. Fu and F. Yang,
Identifying an unknown source term in a heat equation, Inverse Probl. Sci. Eng., 17 (2009), 901-913.
doi: 10.1080/17415970902916870. |
[6] |
R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualalart and Y. Xiao, A Minicourse on Stochastic Partial Differential Equations, Springer, Heidelberg, Berlin, 2009. |
[7] |
H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Springer Science & Business Media, 1996. |
[8] |
L. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/mbk/082. |
[9] |
L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Rhode Island, 1998. |
[10] |
A. Hasanov and M. Slodička,
An analysis of inverse source problems with final time measured output data for the heat conduction equation: A semigroup approach, Appl. Math. Lett., 26 (2013), 207-214.
doi: 10.1016/j.aml.2012.08.013. |
[11] |
T. Johansson and D. Lesnic,
Determination of a spacewise dependent heat source, J. Comput. Appl. Math., 209 (2007), 66-80.
doi: 10.1016/j.cam.2006.10.026. |
[12] |
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005. |
[13] |
P. Kazimierczyk,
On the stochastic inverse problem for the heat conduction equation, Reports on Mathematical Physics, 26 (1988), 245-259.
doi: 10.1016/0034-4877(88)90027-4. |
[14] |
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[15] |
G. Li,
Data compatibility and conditional stability for an inverse source problem in the heat equation, Appl. Math. Comput., 173 (2006), 566-581.
doi: 10.1016/j.amc.2005.04.053. |
[16] |
M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2017), 015003, 19pp.
doi: 10.1088/1361-6420/aa99d2. |
[17] |
P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004, 22pp.
doi: 10.1088/0266-5611/27/3/035004. |
[18] |
P. Li and G. Yuan,
Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.
doi: 10.1016/j.jmaa.2017.01.074. |
[19] |
Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems, Inverse Problems, 28 (2012), 045008, 18pp.
doi: 10.1088/0266-5611/28/4/045008. |
[20] |
Y. Ma, C. Fu and Y. Zhang,
Identification of an unknown source depending on both time and space variables by a variational method, Appl. Math. Model., 36 (2012), 5080-5090.
doi: 10.1016/j.apm.2011.12.046. |
[21] |
F. Natterer, The Mathematics of Computerized Tomography, Teubner, Stuttgart, 1986. |
[22] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23pp.
doi: 10.1088/1361-6420/ab532c. |
[23] |
J. Nolen and G. Papanicolaou, Fine scale uncertainty in parameter estimation for elliptic equations, Inverse Problems, 25 (2009), 115021, 22pp.
doi: 10.1088/0266-5611/25/11/115021. |
[24] |
A. Prilepko, V. Kamynin and A. Kostin,
Inverse source problem for parabolic equation with the condition of integral observation in time, J. Inverse Ill-posed Probl., 26 (2018), 523-539.
doi: 10.1515/jiip-2017-0049. |
[25] |
E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University Press, London, 1939.
![]() |
[26] |
J. Walsh, An introduction to stochastic partial differential equations, École d'été de Probabilités de Saint-Flour, XIV–1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin, 1986.
doi: 10.1007/BFb0074920. |
[27] |
Z. Wang and J. Liu,
Identification of the pollution source from one-dimensional parabolic equation models, Appl. Math. Comput., 219 (2012), 3403-3413.
doi: 10.1016/j.amc.2008.03.014. |
[28] |
Z. Wang and D. Xu,
On the linear model function method for choosing Tikhonov regularization parameters in linear ill-posed problems, Chinese J. Eng. Math., 30 (2013), 451-466.
|
[29] |
T. Wei and J. Wang,
A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.
doi: 10.1016/j.apnum.2013.12.002. |
[30] |
F. Yang and C. Fu,
A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34 (2010), 3286-3299.
doi: 10.1016/j.apm.2010.02.020. |
show all references
References:
[1] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 1263-1287.
doi: 10.1137/16M1067470. |
[2] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55 (2017), 2616-2643.
doi: 10.1137/16M1088922. |
[3] |
G. Bao, S. Chow, P. Li and H. Zhou,
An inverse random source problem for the Helmholtz equation, Math. Comput., 83 (2014), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5. |
[4] |
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2012), 015006, 16pp.
doi: 10.1088/0266-5611/29/1/015006. |
[5] |
F. Dou, C. Fu and F. Yang,
Identifying an unknown source term in a heat equation, Inverse Probl. Sci. Eng., 17 (2009), 901-913.
doi: 10.1080/17415970902916870. |
[6] |
R. Dalang, D. Khoshnevisan, C. Mueller, D. Nualalart and Y. Xiao, A Minicourse on Stochastic Partial Differential Equations, Springer, Heidelberg, Berlin, 2009. |
[7] |
H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Springer Science & Business Media, 1996. |
[8] |
L. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/mbk/082. |
[9] |
L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Rhode Island, 1998. |
[10] |
A. Hasanov and M. Slodička,
An analysis of inverse source problems with final time measured output data for the heat conduction equation: A semigroup approach, Appl. Math. Lett., 26 (2013), 207-214.
doi: 10.1016/j.aml.2012.08.013. |
[11] |
T. Johansson and D. Lesnic,
Determination of a spacewise dependent heat source, J. Comput. Appl. Math., 209 (2007), 66-80.
doi: 10.1016/j.cam.2006.10.026. |
[12] |
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005. |
[13] |
P. Kazimierczyk,
On the stochastic inverse problem for the heat conduction equation, Reports on Mathematical Physics, 26 (1988), 245-259.
doi: 10.1016/0034-4877(88)90027-4. |
[14] |
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4419-8474-6. |
[15] |
G. Li,
Data compatibility and conditional stability for an inverse source problem in the heat equation, Appl. Math. Comput., 173 (2006), 566-581.
doi: 10.1016/j.amc.2005.04.053. |
[16] |
M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2017), 015003, 19pp.
doi: 10.1088/1361-6420/aa99d2. |
[17] |
P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004, 22pp.
doi: 10.1088/0266-5611/27/3/035004. |
[18] |
P. Li and G. Yuan,
Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.
doi: 10.1016/j.jmaa.2017.01.074. |
[19] |
Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems, Inverse Problems, 28 (2012), 045008, 18pp.
doi: 10.1088/0266-5611/28/4/045008. |
[20] |
Y. Ma, C. Fu and Y. Zhang,
Identification of an unknown source depending on both time and space variables by a variational method, Appl. Math. Model., 36 (2012), 5080-5090.
doi: 10.1016/j.apm.2011.12.046. |
[21] |
F. Natterer, The Mathematics of Computerized Tomography, Teubner, Stuttgart, 1986. |
[22] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23pp.
doi: 10.1088/1361-6420/ab532c. |
[23] |
J. Nolen and G. Papanicolaou, Fine scale uncertainty in parameter estimation for elliptic equations, Inverse Problems, 25 (2009), 115021, 22pp.
doi: 10.1088/0266-5611/25/11/115021. |
[24] |
A. Prilepko, V. Kamynin and A. Kostin,
Inverse source problem for parabolic equation with the condition of integral observation in time, J. Inverse Ill-posed Probl., 26 (2018), 523-539.
doi: 10.1515/jiip-2017-0049. |
[25] |
E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University Press, London, 1939.
![]() |
[26] |
J. Walsh, An introduction to stochastic partial differential equations, École d'été de Probabilités de Saint-Flour, XIV–1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin, 1986.
doi: 10.1007/BFb0074920. |
[27] |
Z. Wang and J. Liu,
Identification of the pollution source from one-dimensional parabolic equation models, Appl. Math. Comput., 219 (2012), 3403-3413.
doi: 10.1016/j.amc.2008.03.014. |
[28] |
Z. Wang and D. Xu,
On the linear model function method for choosing Tikhonov regularization parameters in linear ill-posed problems, Chinese J. Eng. Math., 30 (2013), 451-466.
|
[29] |
T. Wei and J. Wang,
A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.
doi: 10.1016/j.apnum.2013.12.002. |
[30] |
F. Yang and C. Fu,
A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34 (2010), 3286-3299.
doi: 10.1016/j.apm.2010.02.020. |









[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[5] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[6] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[7] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[8] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[9] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[10] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[11] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[14] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[15] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[16] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[17] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[18] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[19] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[20] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]