doi: 10.3934/ipi.2021009

Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems

1. 

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD) FI-40014 University of Jyväskylä, Finland

2. 

Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, Rämistrasse 101, CH-8092 Zürich, Switzerland

* Corresponding author

Received  March 2020 Revised  September 2020 Published  January 2021

Fund Project: G.C. was partially supported by the European Research Council under Horizon 2020 (ERC CoG 770924). K.M. and J.R. were partially supported by Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963)

We prove a unique continuation property for the fractional Laplacian $ (-\Delta)^s $ when $ s \in (-n/2, \infty)\setminus \mathbb{Z} $ where $ n\geq 1 $. In addition, we study Poincaré-type inequalities for the operator $ (-\Delta)^s $ when $ s\geq 0 $. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schrödinger equation. We also study the higher order fractional Schrödinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $ d $-plane Radon transform in low regularity. Our work extends some recent results in inverse problems for more general operators.

Citation: Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, doi: 10.3934/ipi.2021009
References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators, De Gruyter Graduate Lectures, De Gruyter, Berlin, 2012, An introduction with applications.  Google Scholar

[2]

A. Abouelaz, The $d$-plane Radon transform on the torus $\Bbb T^n$, Fract. Calc. Appl. Anal., 14 (2011), 233-246.  doi: 10.2478/s13540-011-0014-8.  Google Scholar

[3]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, vol. 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[4]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[5]

A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, arXiv: 1512.07379. Google Scholar

[6]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[7]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.  Google Scholar

[11]

M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 91, 46pp. doi: 10.1007/s00526-020-01740-6.  Google Scholar

[12]

S. N. Chandler-WildeD. P. Hewett and A. Moiola, Sobolev spaces on non-Lipschitz subsets of $\Bbb{R}^n$ with application to boundary integral equations on fractal screens, Integral Equations Operator Theory, 87 (2017), 179-224.  doi: 10.1007/s00020-017-2342-5.  Google Scholar

[13]

M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge, Inverse Problems, 24 (2008), 065001, 27pp. doi: 10.1088/0266-5611/24/6/065001.  Google Scholar

[14]

G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 045004, 24pp. doi: 10.1088/1361-6420/ab661a.  Google Scholar

[15]

G. Covi, Inverse problems for a fractional conductivity equation, Nonlinear Anal., 193 (2020), 111418, 18pp. doi: 10.1016/j.na.2019.01.008.  Google Scholar

[16]

G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: uniqueness, arXiv: 2008.10227. Google Scholar

[17]

A. D'Agnolo and M. Eastwood, Radon and Fourier transforms for $\mathcal{D}$-modules, Adv. Math., 180 (2003), 452-485.  doi: 10.1016/S0001-8708(03)00011-2.  Google Scholar

[18]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc., 19 (2017), 957-966.  doi: 10.4171/JEMS/684.  Google Scholar

[19]

Q. DuM. GunzburgerR. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[20]

Q. DuM. GunzburgerR. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.  doi: 10.1142/S0218202512500546.  Google Scholar

[21]

G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials, Comm. Math. Phys., 222 (2001), 503-531.  doi: 10.1007/s002200100522.  Google Scholar

[22]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[23]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[24]

V. Felli and A. Ferrero, Unique continuation principles for a higher order fractional Laplace equation, Nonlinearity, 33 (2020), 4133-4190.  doi: 10.1088/1361-6544/ab8691.  Google Scholar

[25]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997), 207-238.  doi: 10.1007/BF02649110.  Google Scholar

[26]

J. Frikel and E. T. Quinto, Limited data problems for the generalized Radon transform in $\Bbb R^n$, SIAM J. Math. Anal., 48 (2016), 2301-2318.  doi: 10.1137/15M1045405.  Google Scholar

[27]

M. A. García-Ferrero and A. Rüland, Strong unique continuation for the higher order fractional Laplacian, Math. Eng., 1 (2019), 715-774.  doi: 10.3934/mine.2019.4.715.  Google Scholar

[28]

T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 108505, 42pp. doi: 10.1016/j.jfa.2020.108505.  Google Scholar

[29]

T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.  Google Scholar

[30]

F. O. Goncharov, An iterative inversion of weighted radon transforms along hyperplanes, Inverse Problems, 33 (2017), 124005, 20pp. doi: 10.1088/1361-6420/aa91a4.  Google Scholar

[31]

F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights, J. Geom. Anal., 28 (2018), 3807-3828.  doi: 10.1007/s12220-018-0001-y.  Google Scholar

[32]

F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions, Inverse Problems, 34 (2018), 054001, 6pp. doi: 10.1088/1361-6420/aab24d.  Google Scholar

[33]

F. B. Gonzalez, On the range of the Radon $d$-plane transform and its dual, Trans. Amer. Math. Soc., 327 (1991), 601-619.  doi: 10.2307/2001816.  Google Scholar

[34]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials, SIAM J. Math. Anal., 51 (2019), 3092-3111.  doi: 10.1137/18M1166298.  Google Scholar

[35]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schödinger equation II. General potentials and stability, SIAM J. Math. Anal., 52 (2020), 402-436.  doi: 10.1137/19M1251576.  Google Scholar

[36]

H. HeckX. Li and J.-N. Wang, Identification of viscosity in an incompressible fluid, Indiana Univ. Math. J., 56 (2007), 2489-2510.  doi: 10.1512/iumj.2007.56.3037.  Google Scholar

[37]

S. Helgason, Integral Geometry and Radon transforms, Springer, New York, 2011. doi: 10.1007/978-1-4419-6055-9.  Google Scholar

[38]

A. Homan and H. Zhou, Injectivity and stability for a generic class of generalized Radon transforms, J. Geom. Anal., 27 (2017), 1515-1529.  doi: 10.1007/s12220-016-9729-4.  Google Scholar

[39]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, 2nd edition, Springer Study Edition, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[40]

J. Horváth, Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Google Scholar

[41]

J. Ilmavirta, On Radon transforms on tori, J. Fourier Anal. Appl., 21 (2015), 370-382.  doi: 10.1007/s00041-014-9374-x.  Google Scholar

[42]

J. Ilmavirta and K. Mönkkönen, Unique continuation of the normal operator of the x-ray transform and applications in geophysics, Inverse Problems, 36 (2020), 045014, 23pp. doi: 10.1088/1361-6420/ab6e75.  Google Scholar

[43]

E. Katsevich, A. Katsevich and G. Wang, Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Problems, 28 (2012), 065022, 28pp. doi: 10.1088/0266-5611/28/6/065022.  Google Scholar

[44]

E. Klann, E. T. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography, Inverse Problems, 31 (2015), 025001, 22pp. doi: 10.1088/0266-5611/31/2/025001.  Google Scholar

[45]

V. P. Krishnan and E. T. Quinto, Microlocal Analysis in Tomography, in Handbook of Mathematical Methods in Imaging (ed. O. Scherzer), Springer, New York, 2015,847–902. doi: 10.1007/978-1-4939-0790-8_36.  Google Scholar

[46]

N. V. Krylov, All functions are locally $s$-harmonic up to a small error, J. Funct. Anal., 277 (2019), 2728-2733.  doi: 10.1016/j.jfa.2019.02.012.  Google Scholar

[47]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[48]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the fractional semilinear Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 1189-1199.  doi: 10.1090/proc/14319.  Google Scholar

[49]

R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, arXiv: 2004.00549. Google Scholar

[50]

R.-Y. LaiY.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM J. Math. Anal., 52 (2020), 2655-2688.  doi: 10.1137/19M1270288.  Google Scholar

[51]

N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. doi: 10.1142/10541.  Google Scholar

[52]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[53]

L. Li, A semilinear inverse problem for the fractional magnetic Laplacian, arXiv: 2005.06714. Google Scholar

[54]

L. Li, The Calderón problem for the fractional magnetic operator, Inverse Problems, 36 (2020), 075003, 14pp. doi: 10.1088/1361-6420/ab8445.  Google Scholar

[55]

L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, arXiv: 2006.10150. Google Scholar

[56]

V. G. Maz'ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers, vol. 337 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, With applications to differential and integral operators.  Google Scholar

[57]

S. R. McDowall, An electromagnetic inverse problem in chiral media, Trans. Amer. Math. Soc., 352 (2000), 2993-3013.  doi: 10.1090/S0002-9947-00-02518-6.  Google Scholar

[58] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[59]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[60]

D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Universitext, Springer, New York, 2013. doi: 10.1007/978-1-4614-8208-6.  Google Scholar

[61]

G. NakamuraZ. Q. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[62]

G. Nakamura and T. Tsuchida, Uniqueness for an inverse boundary value problem for Dirac operators, Comm. Partial Differential Equations, 25 (2000), 1327-1369.  doi: 10.1080/03605300008821551.  Google Scholar

[63]

G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in elasticity, Invent. Math., 118 (1994), 457-474.  doi: 10.1007/BF01231541.  Google Scholar

[64]

F. Natterer, The Mathematics of Computerized Tomography, vol. 32 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001, Reprint of the 1986 original. doi: 10.1137/1.9780898719284.  Google Scholar

[65]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[66]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in ${\mathbf{R}}^2$ and ${\mathbf{R}}^3$, SIAM J. Math. Anal., 24 (1993), 1215-1225.  doi: 10.1137/0524069.  Google Scholar

[67]

E. T. Quinto, Artifacts and visible singularities in limited data X-ray tomography, Sens Imaging, 18 (2017), 9. doi: 10.1007/s11220-017-0158-7.  Google Scholar

[68]

J. Railo, Fourier analysis of periodic Radon transforms, J. Fourier Anal. Appl., 26 (2020), Paper No. 64, 27pp. doi: 10.1007/s00041-020-09775-1.  Google Scholar

[69] A. G. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography, CRC Press, Boca Raton, FL, 1996.   Google Scholar
[70]

T. Reichelt, A comparison theorem between Radon and Fourier-Laplace transforms for D-modules, Ann. Inst. Fourier (Grenoble), 65 (2015), 1577-1616.  doi: 10.5802/aif.2968.  Google Scholar

[71]

M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9 (1938), 1-42.   Google Scholar

[72]

X. Ros-Oton, Nonlocal equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[73]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.  Google Scholar

[74]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.  Google Scholar

[75]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 111529, 56pp. doi: 10.1016/j.na.2019.05.010.  Google Scholar

[76]

A. Rüland and M. Salo, Quantitative approximation properties for the fractional heat equation, Math. Control Relat. Fields, 10 (2020), 1-26.  doi: 10.3934/mcrf.2019027.  Google Scholar

[77]

M. Salo, Recovering first order terms from boundary measurements, J. Phys.: Conf. Ser., 73 (2007), 012020. doi: 10.1088/1742-6596/73/1/012020.  Google Scholar

[78]

M. Salo, Calderón problem, 2008, http://users.jyu.fi/~salomi/lecturenotes/calderon_lectures.pdf, Lecture notes. Google Scholar

[79]

M. Salo, Fourier analysis and distribution theory, 2013, http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf, Lecture notes. Google Scholar

[80]

M. Salo, The fractional calderón problem, Journées Équations aux Dérivées Partielles, 2017, 8pp. doi: 10.5802/jedp.657.  Google Scholar

[81]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[82]

P. Stefanov and G. Uhlmann, Microlocal Analysis and Integral Geometry (working title), 2018, http://www.math.purdue.edu/~stefanov/publications/book.pdf, Draft version. Google Scholar

[83] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.   Google Scholar
[84]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

[85]

L. Xiaojun, A Note On Fractional Order Poincarés Inequalities, 2012, http://www.bcamath.org/documentos_public/archivos/publicaciones/Poicare_Academie.pdf. Google Scholar

[86]

J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography, Inverse Problems, 26 (2010), 035013, 29pp. doi: 10.1088/0266-5611/26/3/035013.  Google Scholar

[87]

R. Yang, On higher order extensions for the fractional Laplacian, arXiv: 1302.4413. Google Scholar

[88]

Y. Ye, H. Yu and G. Wang, Exact interior reconstruction from truncated limited-angle projection data, International Journal of Biomedical Imaging, 2008 (2008), Article ID 427989. doi: 10.1155/2008/427989.  Google Scholar

[89]

H. Yu and G. Wang, Compressed sensing based interior tomography, Phys. Med. Biol., 54 (2009), 2791–2805, https://doi.org/10.1088%2F0031-9155%2F54%2F9%2F014. Google Scholar

show all references

References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators, De Gruyter Graduate Lectures, De Gruyter, Berlin, 2012, An introduction with applications.  Google Scholar

[2]

A. Abouelaz, The $d$-plane Radon transform on the torus $\Bbb T^n$, Fract. Calc. Appl. Anal., 14 (2011), 233-246.  doi: 10.2478/s13540-011-0014-8.  Google Scholar

[3]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, vol. 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[4]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[5]

A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, arXiv: 1512.07379. Google Scholar

[6]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[7]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana, Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.  Google Scholar

[11]

M. Cekić, Y.-H. Lin and A. Rüland, The Calderón problem for the fractional Schrödinger equation with drift, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 91, 46pp. doi: 10.1007/s00526-020-01740-6.  Google Scholar

[12]

S. N. Chandler-WildeD. P. Hewett and A. Moiola, Sobolev spaces on non-Lipschitz subsets of $\Bbb{R}^n$ with application to boundary integral equations on fractal screens, Integral Equations Operator Theory, 87 (2017), 179-224.  doi: 10.1007/s00020-017-2342-5.  Google Scholar

[13]

M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge, Inverse Problems, 24 (2008), 065001, 27pp. doi: 10.1088/0266-5611/24/6/065001.  Google Scholar

[14]

G. Covi, An inverse problem for the fractional Schrödinger equation in a magnetic field, Inverse Problems, 36 (2020), 045004, 24pp. doi: 10.1088/1361-6420/ab661a.  Google Scholar

[15]

G. Covi, Inverse problems for a fractional conductivity equation, Nonlinear Anal., 193 (2020), 111418, 18pp. doi: 10.1016/j.na.2019.01.008.  Google Scholar

[16]

G. Covi, K. Mönkkönen, J. Railo and G. Uhlmann, The higher order fractional Calderón problem for linear local operators: uniqueness, arXiv: 2008.10227. Google Scholar

[17]

A. D'Agnolo and M. Eastwood, Radon and Fourier transforms for $\mathcal{D}$-modules, Adv. Math., 180 (2003), 452-485.  doi: 10.1016/S0001-8708(03)00011-2.  Google Scholar

[18]

S. DipierroO. Savin and E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc., 19 (2017), 957-966.  doi: 10.4171/JEMS/684.  Google Scholar

[19]

Q. DuM. GunzburgerR. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667-696.  doi: 10.1137/110833294.  Google Scholar

[20]

Q. DuM. GunzburgerR. B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), 493-540.  doi: 10.1142/S0218202512500546.  Google Scholar

[21]

G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials, Comm. Math. Phys., 222 (2001), 503-531.  doi: 10.1007/s002200100522.  Google Scholar

[22]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[23]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[24]

V. Felli and A. Ferrero, Unique continuation principles for a higher order fractional Laplace equation, Nonlinearity, 33 (2020), 4133-4190.  doi: 10.1088/1361-6544/ab8691.  Google Scholar

[25]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997), 207-238.  doi: 10.1007/BF02649110.  Google Scholar

[26]

J. Frikel and E. T. Quinto, Limited data problems for the generalized Radon transform in $\Bbb R^n$, SIAM J. Math. Anal., 48 (2016), 2301-2318.  doi: 10.1137/15M1045405.  Google Scholar

[27]

M. A. García-Ferrero and A. Rüland, Strong unique continuation for the higher order fractional Laplacian, Math. Eng., 1 (2019), 715-774.  doi: 10.3934/mine.2019.4.715.  Google Scholar

[28]

T. Ghosh, A. Rüland, M. Salo and G. Uhlmann, Uniqueness and reconstruction for the fractional Calderón problem with a single measurement, J. Funct. Anal., 279 (2020), 108505, 42pp. doi: 10.1016/j.jfa.2020.108505.  Google Scholar

[29]

T. GhoshM. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, Anal. PDE, 13 (2020), 455-475.  doi: 10.2140/apde.2020.13.455.  Google Scholar

[30]

F. O. Goncharov, An iterative inversion of weighted radon transforms along hyperplanes, Inverse Problems, 33 (2017), 124005, 20pp. doi: 10.1088/1361-6420/aa91a4.  Google Scholar

[31]

F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for Radon transforms with continuous positive rotation invariant weights, J. Geom. Anal., 28 (2018), 3807-3828.  doi: 10.1007/s12220-018-0001-y.  Google Scholar

[32]

F. O. Goncharov and R. G. Novikov, An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions, Inverse Problems, 34 (2018), 054001, 6pp. doi: 10.1088/1361-6420/aab24d.  Google Scholar

[33]

F. B. Gonzalez, On the range of the Radon $d$-plane transform and its dual, Trans. Amer. Math. Soc., 327 (1991), 601-619.  doi: 10.2307/2001816.  Google Scholar

[34]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials, SIAM J. Math. Anal., 51 (2019), 3092-3111.  doi: 10.1137/18M1166298.  Google Scholar

[35]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schödinger equation II. General potentials and stability, SIAM J. Math. Anal., 52 (2020), 402-436.  doi: 10.1137/19M1251576.  Google Scholar

[36]

H. HeckX. Li and J.-N. Wang, Identification of viscosity in an incompressible fluid, Indiana Univ. Math. J., 56 (2007), 2489-2510.  doi: 10.1512/iumj.2007.56.3037.  Google Scholar

[37]

S. Helgason, Integral Geometry and Radon transforms, Springer, New York, 2011. doi: 10.1007/978-1-4419-6055-9.  Google Scholar

[38]

A. Homan and H. Zhou, Injectivity and stability for a generic class of generalized Radon transforms, J. Geom. Anal., 27 (2017), 1515-1529.  doi: 10.1007/s12220-016-9729-4.  Google Scholar

[39]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, 2nd edition, Springer Study Edition, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[40]

J. Horváth, Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. Google Scholar

[41]

J. Ilmavirta, On Radon transforms on tori, J. Fourier Anal. Appl., 21 (2015), 370-382.  doi: 10.1007/s00041-014-9374-x.  Google Scholar

[42]

J. Ilmavirta and K. Mönkkönen, Unique continuation of the normal operator of the x-ray transform and applications in geophysics, Inverse Problems, 36 (2020), 045014, 23pp. doi: 10.1088/1361-6420/ab6e75.  Google Scholar

[43]

E. Katsevich, A. Katsevich and G. Wang, Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Problems, 28 (2012), 065022, 28pp. doi: 10.1088/0266-5611/28/6/065022.  Google Scholar

[44]

E. Klann, E. T. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography, Inverse Problems, 31 (2015), 025001, 22pp. doi: 10.1088/0266-5611/31/2/025001.  Google Scholar

[45]

V. P. Krishnan and E. T. Quinto, Microlocal Analysis in Tomography, in Handbook of Mathematical Methods in Imaging (ed. O. Scherzer), Springer, New York, 2015,847–902. doi: 10.1007/978-1-4939-0790-8_36.  Google Scholar

[46]

N. V. Krylov, All functions are locally $s$-harmonic up to a small error, J. Funct. Anal., 277 (2019), 2728-2733.  doi: 10.1016/j.jfa.2019.02.012.  Google Scholar

[47]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[48]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the fractional semilinear Schrödinger equation, Proc. Amer. Math. Soc., 147 (2019), 1189-1199.  doi: 10.1090/proc/14319.  Google Scholar

[49]

R.-Y. Lai and Y.-H. Lin, Inverse problems for fractional semilinear elliptic equations, arXiv: 2004.00549. Google Scholar

[50]

R.-Y. LaiY.-H. Lin and A. Rüland, The Calderón problem for a space-time fractional parabolic equation, SIAM J. Math. Anal., 52 (2020), 2655-2688.  doi: 10.1137/19M1270288.  Google Scholar

[51]

N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. doi: 10.1142/10541.  Google Scholar

[52]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[53]

L. Li, A semilinear inverse problem for the fractional magnetic Laplacian, arXiv: 2005.06714. Google Scholar

[54]

L. Li, The Calderón problem for the fractional magnetic operator, Inverse Problems, 36 (2020), 075003, 14pp. doi: 10.1088/1361-6420/ab8445.  Google Scholar

[55]

L. Li, Determining the magnetic potential in the fractional magnetic Calderón problem, arXiv: 2006.10150. Google Scholar

[56]

V. G. Maz'ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers, vol. 337 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, With applications to differential and integral operators.  Google Scholar

[57]

S. R. McDowall, An electromagnetic inverse problem in chiral media, Trans. Amer. Math. Soc., 352 (2000), 2993-3013.  doi: 10.1090/S0002-9947-00-02518-6.  Google Scholar

[58] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[59]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[60]

D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Universitext, Springer, New York, 2013. doi: 10.1007/978-1-4614-8208-6.  Google Scholar

[61]

G. NakamuraZ. Q. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388.  doi: 10.1007/BF01460996.  Google Scholar

[62]

G. Nakamura and T. Tsuchida, Uniqueness for an inverse boundary value problem for Dirac operators, Comm. Partial Differential Equations, 25 (2000), 1327-1369.  doi: 10.1080/03605300008821551.  Google Scholar

[63]

G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in elasticity, Invent. Math., 118 (1994), 457-474.  doi: 10.1007/BF01231541.  Google Scholar

[64]

F. Natterer, The Mathematics of Computerized Tomography, vol. 32 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001, Reprint of the 1986 original. doi: 10.1137/1.9780898719284.  Google Scholar

[65]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[66]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in ${\mathbf{R}}^2$ and ${\mathbf{R}}^3$, SIAM J. Math. Anal., 24 (1993), 1215-1225.  doi: 10.1137/0524069.  Google Scholar

[67]

E. T. Quinto, Artifacts and visible singularities in limited data X-ray tomography, Sens Imaging, 18 (2017), 9. doi: 10.1007/s11220-017-0158-7.  Google Scholar

[68]

J. Railo, Fourier analysis of periodic Radon transforms, J. Fourier Anal. Appl., 26 (2020), Paper No. 64, 27pp. doi: 10.1007/s00041-020-09775-1.  Google Scholar

[69] A. G. Ramm and A. I. Katsevich, The Radon Transform and Local Tomography, CRC Press, Boca Raton, FL, 1996.   Google Scholar
[70]

T. Reichelt, A comparison theorem between Radon and Fourier-Laplace transforms for D-modules, Ann. Inst. Fourier (Grenoble), 65 (2015), 1577-1616.  doi: 10.5802/aif.2968.  Google Scholar

[71]

M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9 (1938), 1-42.   Google Scholar

[72]

X. Ros-Oton, Nonlocal equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.  doi: 10.5565/PUBLMAT_60116_01.  Google Scholar

[73]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potentials, Comm. Partial Differential Equations, 40 (2015), 77-114.  doi: 10.1080/03605302.2014.905594.  Google Scholar

[74]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21pp. doi: 10.1088/1361-6420/aaac5a.  Google Scholar

[75]

A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability, Nonlinear Anal., 193 (2020), 111529, 56pp. doi: 10.1016/j.na.2019.05.010.  Google Scholar

[76]

A. Rüland and M. Salo, Quantitative approximation properties for the fractional heat equation, Math. Control Relat. Fields, 10 (2020), 1-26.  doi: 10.3934/mcrf.2019027.  Google Scholar

[77]

M. Salo, Recovering first order terms from boundary measurements, J. Phys.: Conf. Ser., 73 (2007), 012020. doi: 10.1088/1742-6596/73/1/012020.  Google Scholar

[78]

M. Salo, Calderón problem, 2008, http://users.jyu.fi/~salomi/lecturenotes/calderon_lectures.pdf, Lecture notes. Google Scholar

[79]

M. Salo, Fourier analysis and distribution theory, 2013, http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf, Lecture notes. Google Scholar

[80]

M. Salo, The fractional calderón problem, Journées Équations aux Dérivées Partielles, 2017, 8pp. doi: 10.5802/jedp.657.  Google Scholar

[81]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[82]

P. Stefanov and G. Uhlmann, Microlocal Analysis and Integral Geometry (working title), 2018, http://www.math.purdue.edu/~stefanov/publications/book.pdf, Draft version. Google Scholar

[83] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.   Google Scholar
[84]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

[85]

L. Xiaojun, A Note On Fractional Order Poincarés Inequalities, 2012, http://www.bcamath.org/documentos_public/archivos/publicaciones/Poicare_Academie.pdf. Google Scholar

[86]

J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography, Inverse Problems, 26 (2010), 035013, 29pp. doi: 10.1088/0266-5611/26/3/035013.  Google Scholar

[87]

R. Yang, On higher order extensions for the fractional Laplacian, arXiv: 1302.4413. Google Scholar

[88]

Y. Ye, H. Yu and G. Wang, Exact interior reconstruction from truncated limited-angle projection data, International Journal of Biomedical Imaging, 2008 (2008), Article ID 427989. doi: 10.1155/2008/427989.  Google Scholar

[89]

H. Yu and G. Wang, Compressed sensing based interior tomography, Phys. Med. Biol., 54 (2009), 2791–2805, https://doi.org/10.1088%2F0031-9155%2F54%2F9%2F014. Google Scholar

[1]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[3]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[11]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[12]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[13]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[18]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[19]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (19)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]