\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks

  • * Corresponding author: Maciej Rysz

    * Corresponding author: Maciej Rysz 
Distribution A: Approved for public release, distribution is unlimited, 96TW-2020-0170
Abstract Full Text(HTML) Figure(8) / Table(7) Related Papers Cited by
  • Navigating unmanned aerial vehicles in precarious environments is of great importance. It is necessary to rely on alternative information processing techniques to attain spatial information that is required for navigation in such settings. This paper introduces a novel deep learning-based approach for navigating that exclusively relies on synthetic aperture radar (SAR) images. The proposed method utilizes deep neural networks (DNNs) for image matching, retrieval, and registration. To this end, we introduce Deep Cosine Similarity Neural Networks (DCSNNs) for mapping SAR images to a global descriptive feature vector. We also introduce a fine-tuning algorithm for DCSNNs, and DCSNNs are used to generate a database of feature vectors for SAR images that span a geographic area of interest, which, in turn, are compared against a feature vector of an inquiry image. Images similar to the inquiry are retrieved from the database by using a scalable distance measure between the feature vector outputs of DCSNN. Methods for reranking the retrieved SAR images that are used to update position coordinates of an inquiry SAR image by estimating from the best retrieved SAR image are also introduced. Numerical experiments comparing with baselines on the Polarimetric SAR (PolSAR) images are presented.

    Mathematics Subject Classification: Primary: 68T07, 68U10; Secondary: 65D18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Overview of the system for SAR aided navigating by SAR image representation, matching and registration

    Figure 2.  Example of a patch graph. (a) a SAR map from the UAVSAR dataset (b) patches extracted from the SAR map and its associated graph (c) visualization of the adjacency matrix. White cells show zero edge values whereas black cells show nonzero values

    Figure 3.  Overview of Product Quantization (PQ) with DCSNN

    Figure 4.  Comparison between keypoints generated by (a) SAR-SIFT and (b) SIFT

    Figure 5.  (a) SAR-SIFT based keypoints on two adjacent SAR patches (b) image matching of the keypoints via RANSAC

    Figure 6.  PolSAR data from UAVSAR dataset for our experiments. (From left) VVVV(R), HVHV(G), HHHH(B) channels, and total RGB image. Best viewed in color. (a) PolSAR map for Hayward Fault Zone in California, US. (b) PolSAR map for Yukon–Kuskokwim Delta in Alaska, US

    Figure 7.  Precision recall curves on Hayward Fault Zone (Top rows) and Yukon–Kuskokwim Delta (Bottom rows) PolSAR maps. From left column, the feature length is $ 24 $, $ 48 $, $ 96 $, and $ 120 $. AlexNet is used as a backbone

    Figure 8.  Examples of the retrieved SAR patches before and after reranking processes. First column represents examples of inquiry SAR patches. The first two rows ((a) and (b)) are from Hayward Fault Zone PolSAR and the later two rows ((c) and (d)) are from Yukon-Kuskokwim Delta PolSAR data. Having green box indicates it is correctly retrieved, whereas having red box indicates that it is incorrectly retrieved

    Table 1.  Descriptions of the PolSAR map from UAVSAR [1]

    Region (Dataset Name) Usage Acquired Date Pixel Size (Height×Width) #Patches
    Hayward Fault Zone Training Oct 9, 2018 $23506\times3300$ 6440
    Test May 30, 2019 $23476\times3300$ 6412
    Yukon–Kuskokwim Delta Training Aug 28, 2018 $19066\times3300$ 5180
    Test Sep 17, 2019 $19148\times3300$ 5208
     | Show Table
    DownLoad: CSV

    Table 2.  Mean average precision (mAP) results of DCSNN and binary hashing methods before reranking on Hayward Fault Zone PolSAR map

    Methods Feature length $l$ AlexNet [21] VGG-11 [40]
    Pretrained (BH) $l=24$ 0.0478 0.0313
    $l=48$ 0.0761 0.0522
    $l=96$ 0.1547 0.1200
    $l=120$ 0.1566 0.1219
    Pretrained (PQ+AQD) $l=24$ 0.2332 0.1706
    $l=48$ 0.3208 0.2055
    $l=96$ 0.3231 0.2676
    $l=120$ 0.3856 0.3161
    DHN [50] $l=24$ 0.1182 0.1255
    $l=48$ 0.1642 0.1693
    $l=96$ 0.2274 0.2153
    $l=120$ 0.3202 0.2449
    DPSH [23] $l=24$ 0.0895 0.1220
    $l=48$ 0.2825 0.2632
    $l=96$ 0.4545 0.4005
    $l=120$ 0.5213 0.4334
    DHNN-L2 [24] $l=24$ 0.0451 0.1147
    $l=48$ 0.0683 0.1291
    $l=96$ 0.2044 0.1329
    $l=120$ 0.2190 0.1304
    DCSNN (ours) $l=24$ 0.2519 0.4889
    $l=48$ 0.6145 0.6301
    $l=96$ 0.6481 0.5783
    $l=120$ 0.6813 0.5819
     | Show Table
    DownLoad: CSV

    Table 3.  mAP results of the DCSNN and binary hashing methods before reranking on Yukon–Kuskokwim Delta PolSAR map

    Methods Feature length $l$ AlexNet [21] VGG-11 [40]
    Pretrained (BH) $l=24$ 0.0566 0.0396
    $l=48$ 0.1048 0.0550
    $l=96$ 0.1927 0.1227
    $l=120$ 0.2196 0.1174
    Pretrained (PQ+AQD) $l=24$ 0.2684 0.1736
    $l=48$ 0.3580 0.2091
    $l=96$ 0.3718 0.2579
    $l=120$ 0.4184 0.2690
    DHN [50] $l=24$ 0.1219 0.1610
    $l=48$ 0.2072 0.1910
    $l=96$ 0.2715 0.2447
    $l=120$ 0.3627 0.2239
    DPSH [23] $l=24$ 0.1347 0.1170
    $l=48$ 0.2371 0.2516
    $l=96$ 0.3649 0.3281
    $l=120$ 0.4098 0.3331
    DHNN-L2 [24] $l=24$ 0.0621 0.1132
    $l=48$ 0.1556 0.1812
    $l=96$ 0.2916 0.3166
    $l=120$ 0.3227 0.2822
    DCSNN (ours) $l=24$ 0.4393 0.4324
    $l=48$ 0.5424 0.5196
    $l=96$ 0.5734 0.4913
    $l=120$ 0.5996 0.4831
     | Show Table
    DownLoad: CSV

    Table 4.  mAP values before and after reranking with SAR-SIFT or SIFT on Hayward Fault Zone PolSAR map

    CNN backbone Feature length $l$ Before reranking After reranking (SAR-SIFT/SIFT)
    AlexNet [21] $l=24$ 0.2519 0.4074/0.3533
    $l=48$ 0.6145 0.7394/0.6850
    $l=96$ 0.6481 0.7548/0.6998
    $l=120$ 0.6813 0.7760/0.7252
    VGG-11 [40] $l=24$ 0.4889 0.6512/0.5813
    $l=48$ 0.6301 0.7540/0.6923
    $l=96$ 0.5783 0.6799/0.6231
    $l=120$ 0.5819 0.6787/0.6216
     | Show Table
    DownLoad: CSV

    Table 5.  mAP values of the DCSNN before and after reranking with SAR-SIFT or SIFT on Yukon–Kuskokwim Delta PolSAR map

    CNN backbone Feature length $l$ Before reranking After reranking (SAR-SIFT/SIFT)
    AlexNet [21] $l=24$ 0.4393 0.5831/0.5965
    $l=48$ 0.5424 0.6591/0.6693
    $l=96$ 0.5734 0.6782/0.6888
    $l=120$ 0.5996 0.7021/0.7123
    VGG-11 [40] $l=24$ 0.4324 0.5909/0.6030
    $l=48$ 0.5196 0.6418/0.6521
    $l=96$ 0.4913 0.5939/0.6036
    $l=120$ 0.4831 0.5840/0.5940
     | Show Table
    DownLoad: CSV

    Table 6.  Positioning accuracy examples

    Inquiry SAR Patch Actual Coordinates [$deg$] Estimated Coordinates [$deg$] Error [$m$]
    Fig. 8(a) 38.0625, -122.2733 38.0625, -122.2734 5.7288
    Fig. 8(b) 37.9836, -122.3599 37.9836, -122.3600 5.7347
    Fig. 8(c) 61.0926, -164.1878 61.0926, -164.1879 4.2529
    Fig. 8(d) 61.0808, -164.1208 61.0808, -164.1208 5.0970
     | Show Table
    DownLoad: CSV

    Table 7.  Mean and standard deviation of positioning error results

    Data Name Success Cases Ratio [%] Distance Error [$m$]
    Hayward Fault Zone 98.50 4.9635$\pm$0.1755
    Yukon–Kuskokwim Delta 97.70 4.9522$\pm$0.4038
     | Show Table
    DownLoad: CSV
  • [1] Dataset: UAVSAR POLSAR, NASA 2020., Retrieved from ASF DAAC, 2020.
    [2] A. Babenko, A. Slesarev, A. Chigorin and V. Lempitsky, Neural codes for image retrieval, in European Conference on Computer Vision, Springer, 2014 (2014), 584–599. doi: 10.1007/978-3-319-10590-1_38.
    [3] G. Balamurugan, J. Valarmathi and V. Naidu, Survey on UAV navigation in GPS denied environments, in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), IEEE, 2016,198–204. doi: 10.1109/SCOPES.2016.7955787.
    [4] J. Bhatti and T. E. Humphreys, Hostile control of ships via false GPS signals: Demonstration and detection, NAVIGATION: Journal of the Institute of Navigation, 64 (2017), 51-66.  doi: 10.1002/navi.183.
    [5] F. CaballeroL. MerinoJ. Ferruz and A. Ollero, Vision-based odometry and SLAM for medium and high altitude flying UAVs, Journal of Intelligent and Robotic Systems, 54 (2009), 137-161.  doi: 10.1007/978-1-4020-9137-7_9.
    [6] Y. Cao, M. Long, J. Wang, H. Zhu and Q. Wen, Deep Quantization Network for Efficient Image Retrieval, in Thirtieth AAAI Conference on Artificial Intelligence, 2016.
    [7] A. CesettiE. FrontoniA. ManciniP. Zingaretti and S. Longhi, A vision-based guidance system for UAV navigation and safe landing using natural landmarks, Journal of Intelligent and Robotic Systems, 57 (2010), 233-257.  doi: 10.1007/978-90-481-8764-5_12.
    [8] G. Conte and P. Doherty, Vision-based unmanned aerial vehicle navigation using geo-referenced information, EURASIP Journal on Advances in Signal Processing, 2009 (2009), Article number: 387308. doi: 10.1155/2009/387308.
    [9] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, IEEE, 2005,886–893. doi: 10.1109/CVPR.2005.177.
    [10] F. DellingerJ. DelonY. GousseauJ. Michel and F. Tupin, SAR-SIFT: A SIFT-like algorithm for SAR images, IEEE Transactions on Geoscience and Remote Sensing, 53 (2015), 453-466.  doi: 10.1109/TGRS.2014.2323552.
    [11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Ieee, 2009,248–255. doi: 10.1109/CVPR.2009.5206848.
    [12] L. R. Dice, Measures of the amount of ecologic association between species, Ecology, 26 (1945), 297-302.  doi: 10.2307/1932409.
    [13] J. DuchiE. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, 12 (2011), 2121-2159. 
    [14] M. A. Fischler and R. C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24 (1981), 381-395.  doi: 10.1145/358669.358692.
    [15] A. GordoJ. AlmazanJ. Revaud and D. Larlus, End-to-end learning of deep visual representations for image retrieval, International Journal of Computer Vision, 124 (2017), 237-254.  doi: 10.1007/s11263-017-1016-8.
    [16] A. GrantP. WilliamsN. Ward and S. Basker, GPS jamming and the impact on maritime navigation, The Journal of Navigation, 62 (2009), 173-187.  doi: 10.1017/S0373463308005213.
    [17] H. JegouM. Douze and C. Schmid, Product quantization for nearest neighbor search, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 117-128.  doi: 10.1109/TPAMI.2010.57.
    [18] M. KaiserN. Gans and W. Dixon, Vision-based estimation for guidance, navigation, and control of an aerial vehicle, IEEE Transactions on Aerospace and Electronic Systems, 46 (2010), 1064-1077.  doi: 10.1109/TAES.2010.5545174.
    [19] W.-C. Kang, W.-J. Li and Z.-H. Zhou, Column Sampling Based Discrete Supervised Hashing, Thirtieth AAAI Conference on Artificial Intelligence, 2016.
    [20] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980.
    [21] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Communications of the ACM, 60 (2017). doi: 10.1145/3065386.
    [22] P. Li and P. Ren, Partial randomness hashing for large-scale remote sensing image retrieval, IEEE Geoscience and Remote Sensing Letters, 14 (2017), 464-468.  doi: 10.1109/LGRS.2017.2651056.
    [23] W.-J. Li, S. Wang and W.-C. Kang, Feature learning based deep supervised hashing with pairwise labels, arXiv preprint, arXiv: 1511.03855.
    [24] Y. LiY. ZhangX. HuangH. Zhu and J. Ma, Large-scale remote sensing image retrieval by deep hashing neural networks, IEEE Transactions on Geoscience and Remote Sensing, 56 (2017), 950-965.  doi: 10.1109/TGRS.2017.2756911.
    [25] H. Liu, R. Wang, S. Shan and X. Chen, Deep supervised hashing for fast image retrieval, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 2064–2072. doi: 10.1109/CVPR.2016.227.
    [26] J.-Z. Liu and X.-C. Yu, Research on SAR image matching technology based on SIFT, ISPRS08, B1.
    [27] D. G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, Ieee, 1999, 1150–1157. doi: 10.1109/ICCV.1999.790410.
    [28] D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60 (2004), 91-110.  doi: 10.1023/B:VISI.0000029664.99615.94.
    [29] J. MacQueen et al., Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, Oakland, CA, USA, 1967,281–297.
    [30] A. Nemra and N. Aouf, Robust INS/GPS sensor fusion for UAV localization using SDRE nonlinear filtering, IEEE Sensors Journal, 10 (2010), 789-798.  doi: 10.1109/JSEN.2009.2034730.
    [31] D. Nistér, O. Naroditsky and J. Bergen, Visual odometry, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, Ieee, 2004, I–I.
    [32] D. O. NittiF. BovengaM. T. ChiaradiaM. Greco and G. Pinelli, Feasibility of using synthetic aperture radar to aid UAV navigation, Sensors, 15 (2015), 18334-18359.  doi: 10.3390/s150818334.
    [33] H. Noh, A. Araujo, J. Sim, T. Weyand and B. Han, Large-scale image retrieval with attentive deep local features, in Proceedings of the IEEE International Conference on Computer Vision, 2017, 3456–3465. doi: 10.1109/ICCV.2017.374.
    [34] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, SciTech Publishing, 2004.
    [35] S. ParkS. H. Jung and P. M. Pardalos, Combining stochastic adaptive cubic regularization with negative curvature for nonconvex optimization, Journal of Optimization Theory and Applications, 184 (2020), 953-971.  doi: 10.1007/s10957-019-01624-6.
    [36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library, in Advances in Neural Information Processing Systems, 2019, 8024–8035.
    [37] M. Shan, F. Wang, F. Lin, Z. Gao, Y. Z. Tang and B. M. Chen, Google map aided visual navigation for UAVs in GPS-denied environment, in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2015,114–119. doi: 10.1109/ROBIO.2015.7418753.
    [38] F. Shen, C. Shen, W. Liu and H. Tao Shen, Supervised discrete hashing, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 37–45. doi: 10.1109/CVPR.2015.7298598.
    [39] D.-G. SimR.-H. ParkR.-C. KimS. U. Lee and I.-C. Kim, Integrated position estimation using aerial image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1-18. 
    [40] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv: 1409.1556.
    [41] S. Suri, P. Schwind, P. Reinartz and J. Uhl, Combining mutual information and scale invariant feature transform for fast and robust multisensor SAR image registration, in 75th Annual ASPRS Conference, 2009.
    [42] G. Tolias, R. Sicre and H. Jégou, Particular object retrieval with integral max-pooling of CNN activations, arXiv preprint, arXiv: 1511.05879.
    [43] B. WangJ. ZhangL. LuG. Huang and Z. Zhao, A uniform SIFT-like algorithm for SAR image registration, IEEE Geoscience and Remote Sensing Letters, 12 (2015), 1426-1430. 
    [44] B. Wessel, M. Huber and A. Roth, Registration of near real-time SAR images by image-to-image matching, in Proc. Photogramm. Image Anal., 2007,179.
    [45] P. Williams and M. Crump, All-source navigation for enhancing UAV operations in GPS-denied environments, in Proceedings of the 28th International Congress of the Aeronautical Sciences, 2012.
    [46] K. M. Yi, E. Trulls, V. Lepetit and P. Fua, LIFT: Learned invariant feature transform, in European Conference on Computer Vision, Springer, 2016 (2016), 467–483. doi: 10.1007/978-3-319-46466-4_28.
    [47] J. Yue-Hei Ng, F. Yang and L. S. Davis, Exploiting local features from deep networks for image retrieval, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, 53–61.
    [48] S. Zhao, F. Lin, K. Peng, B. Chen and T. Lee, Homography-based vision-aided inertial navigation of UAVs in unknown environments, in AIAA Guidance, Navigation, and Control Conference, 2012, 5033. doi: 10.2514/6.2012-5033.
    [49] L. ZhengY. Yang and Q. Tian, SIFT meets CNN: A decade survey of instance retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2018), 1224-1244.  doi: 10.1109/TPAMI.2017.2709749.
    [50] H. Zhu, M. Long, J. Wang and Y. Cao, Deep hashing network for efficient similarity retrieval, in Thirtieth AAAI Conference on Artificial Intelligence, 2016.
    [51] B. Zitova and J. Flusser, Image registration methods: A survey, Image and Vision Computing, 21 (2003), 977-1000.  doi: 10.1016/S0262-8856(03)00137-9.
  • 加载中

Figures(8)

Tables(7)

SHARE

Article Metrics

HTML views(905) PDF downloads(592) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return