\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlocal latent low rank sparse representation for single image super resolution via self-similarity learning

  • * Corresponding author: Changming Song

    * Corresponding author: Changming Song 
This work is supported partially by the National Natural Science Foundation of China under Grants No. 11671367
Abstract Full Text(HTML) Figure(7) / Table(4) Related Papers Cited by
  • In this paper, we propose a novel scheme for single image super resolution (SR) reconstruction. Firstly, we construct a new self-similarity framework by regarding the low resolution (LR) images as the low rank version of corresponding high resolution (HR) images. Subsequently, nuclear norm minimization (NNM) is employed to generate LR image pyramids from HR ones. The structure of our framework is beneficial to extract LR features, where we regard the quotient image, calculated between HR image and LR image at the same layer, as LR feature. This LR feature has the same dimension as LR image; however the dimension of commonly used gradient feature is 4 times than LR image. On the other hand, we employ nonlocal similar patch, within the same scale and across different scales, to generate HR and LR dictionaries. In the course of encoding, codes are calculated from both row and column of LR dictionary for each LR patch; at the same time, both low rank and sparse constraints on codes matrix give us a hand to remove coding noises. Finally, both quantitative and perceptual results demonstrate that our proposed method has a good SR performance.

    Mathematics Subject Classification: Primary: 68U10; Secondary: 94A08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Nuclear norm minimization

    Figure 2.  Our method for conducting image pyramid

    Figure 3.  Visual results comparison for the image"butterfly"($ \times2 $)

    Figure 4.  Visual results comparison for the image"girl"($ \times2 $)

    Figure 5.  Visual results comparison for the image"foreman"($ \times3 $)

    Figure 6.  Visual results comparison for the image"parrots"($ \times3 $)

    Figure 7.  Visual results comparison for the image"hat"($ \times2 $)

    Table 1.  The running time for patch size"$ \times2 $"

    patch size 5 6 7 8 9 10 11
    time 300 217 173 137 128 121 119
    psnr 30.236 30.228 30.226 30.199 30.199 30.198 30.194
    ssim 0.898 0.898 0.898 0.898 0.898 0.897 0.896
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison among different methods "$ \times2 $"

    Methods lena Child butterfly foreman house hat bike parrots girl pepper
    Bicubic 29.469 30.741 24.140 32.186 29.005 29.205 22.801 27.998 33.718 30.939
    0.908 0.909 0.824 0.907 0.840 0.833 0.705 0.883 0.846 0.941
    ScSR 30.056 32.428 24.579 32.789 30.334 29.626 23.426 28.680 34.278 31.157
    0.840 0.844 0.704 0.660 0.472 0.525 0.653 0.621 0.605 0.853
    LRSC 29.758 30.753 24.133 32.709 29.319 29.446 23.016 28.357 34.066 30.926
    0.912 0.904 0.831 0.913 0.845 0.842 0.718 0.891 0.851 0.942
    Our 30.102 31.517 24.830 32.719 29.909 29.649 23.515 28.589 34.099 31.296
    0.913 0.910 0.832 0.914 0.845 0.842 0.718 0.892 0.853 0.942
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison among different methods "$ \times3 $"

    Methods lena Child butterfly foreman house hat bike parrots girl pepper
    Bicubic 28.913 30.432 24.320 32.814 30.213 29.921 23.411 28.536 33.685 29.901
    0.933 0.933 0.894 0.947 0.912 0.896 0.804 0.927 0.900 0.963
    ScSR 30.136 31.452 25.104 33.468 30.878 30.559 24.089 29.264 34.194 30.778
    0.672 0.702 0.574 0.590 0.415 0.440 0.557 0.548 0.489 0.683
    LRSC 29.054 30.753 24.466 33.203 30.387 30.381 23.411 28.408 33.915 29.897
    0.938 0.904 0.894 0.940 0.915 0.902 0.801 0.931 0.901 0.963
    Our 29.782 30.933 24.671 33.450 30.487 29.649 23.775 28.837 33.916 29.901
    0.939 0.936 0.897 0.950 0.916 0.842 0.810 0.931 0.904 0.967
    The values in the cell are PSNR (dB) and SSIM from top to bottom.
     | Show Table
    DownLoad: CSV

    Table 4.  Noisy case: Comparison among different methods "$ \times2 $"

    Methods lena Child butterfly foreman house hat bike parrots girl pepper
    Bicubic 25.059 26.557 22.790 26.795 25.980 25.726 22.918 25.262 27.138 26.470
    0.594 0.593 0.615 0.506 0.484 0.444 0.550 0.497 0.476 0.598
    ScSR 25.094 25.422 20.334 25.416 24.784 24.660 21.567 24.309 25.564 25.393
    0.404 0.409 0.465 0.243 0.231 0.1778 0.428 0.234 0.214 0.404
    LRSC 26.370 26.315 23.452 27.611 26.529 26.472 22.463 26.057 27.994 26.785
    0.675 0.667 0.671 0.585 0.555 0.532 0.614 0.585 0.558 0.671
    WNNM 25.774 25.941 22.937 27.275 27.819 25.632 27.635 25.463 27.866 25.798
    0.621 0.653 0.658 0.576 0.569 0.523 0.564 0.534 0.545 0.579
    Our 27.125 26.315 24.121 28.833 27.375 27.352 22.988 26.896 29.295 27.720
    0.727 0.724 0.717 0.659 0.619 0.598 0.661 0.653 0.632 0.732
    The values in the cell are PSNR (dB) and SSIM from top to bottom.
     | Show Table
    DownLoad: CSV
  • [1] J. Allebach and P. W. Wong, Edge-Directed Interpolation, International Conference on Image Processing IEEE, 1996. doi: 10.1109/ICIP.1996.560768.
    [2] S. Baker and T. Kanade, Limits on super-resolution and how to break them, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 1167-1183.  doi: 10.1109/TPAMI.2002.1033210.
    [3] T. Chan, S. Esedoglu and A. Yip, Recent Developments in Total Variation Image Restoration, Mathematical Models of Computer Vision, 2011.
    [4] W. DongL. ZhangG. Shi and Xin Li, Nonlocally centralized sparse representation for image restoration, IEEE Transactions on Image Processing, 22 (2013), 1620-1630.  doi: 10.1109/TIP.2012.2235847.
    [5] W. Dong, L. Zhang and G. Shi, Centralized sparse representation for image restoration, International Conference on Computer Vision, 2011, 1259-1266.
    [6] W. DongL. ZhangG. Shi and X. Wu, Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization, IEEE Transactions on Image Processing, 20 (2011), 1838-1857.  doi: 10.1109/TIP.2011.2108306.
    [7] W. T. FreemanT.R. Jones and E. C. Pasztor, Example based super resolution, IEEE Computer Graphics and Applications, 22 (2012), 56-65.  doi: 10.1109/38.988747.
    [8] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng and L. Zhang, Convolutional sparse coding for image super-resolution, International Conference on Computer Vision, (2015), 1823-1831. doi: 10.1109/ICCV.2015.212.
    [9] S. GuQ. XiD. MengW. ZuoX. Feng and L. Zhang, Weighted nuclear norm minimization and its applications to low level vision, International Journal of Computer Vision, 121 (2017), 183-208.  doi: 10.1007/s11263-016-0930-5.
    [10] H. Chang, D.-Y. Yeung and Y. Xiong, Super-resolution through neighbor embedding, Computer Vision and Pattern Recognition, 2004,275-282. doi: 10.1109/CVPR.2004.1315043.
    [11] R. G. Keys, Cubic convolution interpolation for digital image processing, IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (1981), 1153-1160.  doi: 10.1109/TASSP.1981.1163711.
    [12] X. Li and M. T. Orchard, New Edge-Directed interpolation, IEEE Transactions on Image Processing, 10 (2001), 1521-1527.  doi: 10.1109/83.951537.
    [13] Z. Lin and H.-Y. Shum, Fundamental limits of reconstruction-based superresolution algorithms under local translation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 83-97.  doi: 10.1109/TPAMI.2004.1261081.
    [14] Z. Lin, M. Chen and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv: 1009.5055.
    [15] G. Liu and S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, International Conference on Computer Vision, (2011), 1615-1622. doi: 10.1109/ICCV.2011.6126422.
    [16] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [17] J. Shi and C. Qi, Low-rank sparse representation for single image super-resolution via self-similarity learning, International Conference on Image Processing, (2016), 1424-1428. doi: 10.1109/ICIP.2016.7532593.
    [18] J. A. Tropp and S. J. Wright, Computational methods for sparse solution of linear inverse problems, Proceedings of the IEEE, 96 (2010), 948-958. 
    [19] S. L. Wang, D. Zhang and L. Yan, Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis, Computer Vision and Pattern Recognition, (2012), 2216-2223.
    [20] H. Wang, S. Z. Li and Y. Wang, Face recognition under varying lighting conditions using self quotient image, IEEE International Conference on Automatic Face Gesture Recognition, (2004), 819-824.
    [21] J. YangJ. WrightT. S. Huang and Y. Ma, Image super-resolution via sparse representation, IEEE Transactions on Image Processing, 19 (2010), 2861-2873.  doi: 10.1109/TIP.2010.2050625.
    [22] C.-Y. Yang, J.-B. Huang and M.-H. Yang, Exploiting self-similarities for single frame super-resolution, Asian Conference on Computer Vision, (2010), 497-510. doi: 10.1007/978-3-642-19318-7_39.
    [23] G. YuG. Sapiro and S. Mallat, Solving inverse problems with piecewise linear estimators:From Gaussian mixture models to structured sparsity, IEEE Transactions on Image Processing, 21 (2012), 2481-2499.  doi: 10.1109/TIP.2011.2176743.
    [24] T. Zhang, B. Ghanem, S. Liu, C. Xu and N. Ahuja, Low-rank sparse coding for image classification, International Conference on Computer Vision, (2013), 281-288. doi: 10.1109/ICCV.2013.42.
  • 加载中
Open Access Under a Creative Commons license

Figures(7)

Tables(4)

SHARE

Article Metrics

HTML views(859) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return