[1]
|
G. Acosta and J. P. Borthagaray, A fractional laplace equation: regularity of solutions and finite element approximations, SIAM Journal on Numerical Analysis, 55 (2017), 472-495.
doi: 10.1137/15M1033952.
|
[2]
|
O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303.
doi: 10.1088/1751-8113/40/24/003.
|
[3]
|
R. S. Anderssen, Richardson's Non-stationary Matrix Iterative Procedure, Technical Report, STAN-CS-72-304, Computer Science Department, Stanford University, 1972.
|
[4]
|
F. Andreu, J. M. Mzaón, J. D. Rossi and J. Toledo, A nonlocal $p$-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl, 90 (2008), 201-227.
doi: 10.1016/j.matpur.2008.04.003.
|
[5]
|
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs AMS, (2010).
doi: 10.1090/surv/165.
|
[6]
|
J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process, 16 (2007), 2492-2502.
doi: 10.1109/TIP.2007.904971.
|
[7]
|
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530.
doi: 10.1137/040616024.
|
[8]
|
A. Buades, B. Coll and J. M. Morel, Image denoising methods, a new nonlocal principle, SIAM Review, 52 (2010), 113-147.
doi: 10.1137/090773908.
|
[9]
|
F. Catte, P. L. Lions, J. M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal of Numerical Analysis, 29 (1992), 182-193.
doi: 10.1137/0729012.
|
[10]
|
D. L. Chen, S. S. Sun, C. R. Zhang, Y. Q. Chen and D. Y. Xue, Fractional order TV-$L^2$ model for image denoising, Central European Journal of Physics, 11 (2013), 1414-1422.
|
[11]
|
Y. Chzhao-Din, Some Difference Schemes for the Solution of the First Boundary Value Problem for Linear Differential Equations with Partial Derivatives, PhD Thesis, Moscow State University (in Russian), 1958.
|
[12]
|
F. Dong and Y. Chen, A fractional-order derivative based variational framework for image denoising, Inverse Problems and Imaging, 10 (2016), 27-50.
doi: 10.3934/ipi.2016.10.27.
|
[13]
|
W. Gentzsch and A. Schluter, Über ein Einschrittverfahren mit zyklischer Schrittweiten anderung zur Losung parabolischer Differentialgleichungen (German), Zeitschrift fur Angewandte Mathematik und Mechanik, 58 (1987), 415-416.
|
[14]
|
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Modeling and Simulation, 6 (2007), 595-630.
doi: 10.1137/060669358.
|
[15]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[16]
|
S. Grewenig, J. Weickert and A. Bruhn, From box filtering to fast explicit diffusion, in Pattern Recognition, Lecture Notes in Comput. Sci., Springer, Berlin, 2010,533–542.
doi: 10.1007/978-3-642-15986-2_54.
|
[17]
|
C. Jin, G. Qian and X. Y. Wang, Image denoising based on adaptive fractional partial differential equations, in 2013 6th International Congress on Image and Signal Processing, (2013), 288–292.
|
[18]
|
Q. Ma, F. Dong and D. Kong, A fractional differential fidelity-based PDE model for image denoising, Machine Vision and Applications, 28 (2017), 635-647.
doi: 10.1007/s00138-017-0857-z.
|
[19]
|
H.-K. Pang and H.-W. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), 693-703.
doi: 10.1016/j.jcp.2011.10.005.
|
[20]
|
M. Pérez-Llanos and J. D. Rossi, Numerical approximations for a nonlocal evolution equation, SIAM Journal on Numerical Analysis, 49 (2011), 2103-2123.
doi: 10.1137/110823559.
|
[21]
|
P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629-639.
doi: 10.1109/34.56205.
|
[22]
|
E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun Nonlinear Sci Numer Simul, 40 (2016), 112-128.
doi: 10.1016/j.cnsns.2016.04.020.
|
[23]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci.Engrg. 198, Academic Press, San Diego, CA, 1999.
|
[24]
|
I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen and B. M. V. Jara, Matrix approach to discrete fractional calculus ii: Partial fractional differential equations, Journal of Computational Physics, 228 (2009), 3137-3153.
doi: 10.1016/j.jcp.2009.01.014.
|
[25]
|
L. F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Transactions of the Royal Society of London Series A, 210 (1910), 307-357.
doi: 10.1098/rsta.1911.0009.
|
[26]
|
P. D. Romero and V. F. Candela, Blind deconvolution models regularized by fractional powers of the Laplacian, J. Math. Imaging Vision, 32 (2008), 181-191.
doi: 10.1007/s10851-008-0093-2.
|
[27]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[28]
|
V. K. Saul'ev, Integration of Equations of Parabolic Type by the Method of Nets, International Series of Monographs in Pure and Applied Mathematics, Vol. 54 Pergamon Press, London-Edinburgh-New York 1960.
|
[29]
|
D. Tian, D. Xue and D. Wang, A fractional-order adaptive regularization primal-dual algorithm for image denoising, Inf. Sci., 296 (2015), 147-159.
doi: 10.1016/j.ins.2014.10.050.
|
[30]
|
R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs, NJ, USA: Prentice-Hall, 1962.
|
[31]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[32]
|
H. Wang and N. Du, Fast solution methods for space-fractional diffusion equations, J. Comput. Appl.Math., 255 (2014), 376-383.
doi: 10.1016/j.cam.2013.06.002.
|
[33]
|
J. Weickert, S. Grewenig, C. Schroers and A. Bruhn, Cyclic schemes for PDE-based image analysis, International Journal of Computer Vision, 118 (2016), 275-299.
doi: 10.1007/s11263-015-0874-1.
|
[34]
|
Q. Yang, D. Chen, T. Zhao and Y. Chen, Fractional calculus in image processing: A review, Fractional Calculus and Applied Analysis, 19 (2016), 1222-1249.
doi: 10.1515/fca-2016-0063.
|
[35]
|
D. Young, On Richardson's method for solving linear systems with positive definite matrices, Journal of Mathematics and Physics, 32 (1954), 243-255.
|
[36]
|
Y.-L. You and M. Kaveh, Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process., 9 (2000), 1723-1730.
doi: 10.1109/83.869184.
|
[37]
|
J. Zhang and K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, Siam Journal on Imaging Sciences, 8 (2015), 2487-2518.
doi: 10.1137/14097121X.
|
[38]
|
Y. Zhang, H. D. Cheng, J. Tian, J. Huang and X. Tang, Fractional subpixel diffusion and fuzzy logic approach for ultrasound speckle reduction, Pattern Recognition, 43 (2010), 2962-2970.
doi: 10.1016/j.patcog.2010.02.014.
|
[39]
|
Y. Zhang, Y.-F. Pu, J.-R. Hu and J.-L. Zhou, A class of fractional-order variational image inpainting models, Applied Mathematics and Information Sciences, 6 (2012), 299-306.
|
[40]
|
J. Zhang and Z. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Appl. Math. Model., 35 (2011), 2516-2528.
doi: 10.1016/j.apm.2010.11.049.
|