We consider an undetermined coefficient inverse problem for a nonlinear partial differential equation occurring in high intensity ultrasound propagation as used in acoustic tomography. In particular, we investigate the recovery of the nonlinearity coefficient commonly labeled as $ B/A $ in the literature which is part of a space dependent coefficient $ \kappa $ in the Westervelt equation governing nonlinear acoustics. Corresponding to the typical measurement setup, the overposed data consists of time trace measurements on some zero or one dimensional set $ \Sigma $ representing the receiving transducer array. After an analysis of the map from $ \kappa $ to the overposed data, we show injectivity of its linearisation and use this as motivation for several iterative schemes to recover $ \kappa $. Numerical simulations will also be shown to illustrate the efficiency of the methods.
Citation: |
[1] |
A. B. Bakushinskiĭ, On a convergence problem of the iterative-regularised Gauss-Newton method, Comput. Math. Math. Phys., 32 (1992), 1353-1359.
![]() ![]() |
[2] |
A. B. Bakushinskii, Remarks on choosing a regularisation parameter using the quasi-optimality and ratio criterion, USSR Comput. Math. Math. Phys., 24 (1984), 181-182.
doi: 10.1016/0041-5553(84)90253-2.![]() ![]() |
[3] |
L. Bjørnø, Characterization of biological media by means of their non-linearity, Ultrasonics, 24 (1986), 254-259.
doi: 10.1016/0041-624x(86)90102-2.![]() ![]() |
[4] |
D. T. Blackstock, Approximate equations governing finite-amplitude sound in thermoviscous fluids, Tech Report, GD/E Report, GD-1463-52, General Dynamics Corp., Rochester, NY, 1963.
![]() |
[5] |
B. Blaschke, A. Neubauer and O. Scherzer, On convergence rates for the iteratively regularised Gauss-Newton method, IMA J. Numer. Anal., 17 (1997), 421-436.
doi: 10.1093/imanum/17.3.421.![]() ![]() ![]() |
[6] |
J. M. Burgers, The Nonlinear Diffusion Equation, Springer, Netherlands, 1974.
doi: 10.1007/978-94-010-1745-9.![]() ![]() |
[7] |
V. Burov, I. Gurinovich, O. Rudenko and E. Tagunov, Reconstruction of the spatial distribution of the nonlinearity parameter and sound velocity in acoustic nonlinear tomography, Acoustical Physics, 40 (1994), 816-823.
![]() |
[8] |
C. A. Cain, Ultrasonic reflection mode imaging of the nonlinear parameter B/A: A theoretical basis, IEEE 1985 Ultrasonics Symposium, San Francisco, CA, USA, 1985.
doi: 10.1109/ULTSYM.1985.198640.![]() ![]() |
[9] |
C. Clason and A. Klassen, Quasi-solution of linear inverse problems in non-reflexive Banach spaces, J. Inverse Ill-Posed Probl., 26 (2018), 689-702.
doi: 10.1515/jiip-2018-0026.![]() ![]() ![]() |
[10] |
C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces, ESAIM Control Optim. Calc. Var., 17 (2011), 243-266.
doi: 10.1051/cocv/2010003.![]() ![]() ![]() |
[11] |
D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech., 11 (1979), 11-33.
doi: 10.1146/annurev.fl.11.010179.000303.![]() ![]() |
[12] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.
![]() ![]() |
[13] |
H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of non-linear ill-posed problems, Inverse Problems, 5 (1989), 523-540.
doi: 10.1088/0266-5611/5/4/007.![]() ![]() ![]() |
[14] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
![]() ![]() |
[15] |
M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Vol. 1, Academic Press, San Diego, 1998.
![]() |
[16] |
M. Hanke, A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.
doi: 10.1088/0266-5611/13/1/007.![]() ![]() ![]() |
[17] |
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158.![]() ![]() ![]() |
[18] |
F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems, SIAM J. Numer. Anal., 37 (2000), 587-620.
doi: 10.1137/S0036142998341246.![]() ![]() ![]() |
[19] |
B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularisation in Banach spaces with non-smooth operators, Inverse Problems, 23 (2007), 987-1010.
doi: 10.1088/0266-5611/23/3/009.![]() ![]() ![]() |
[20] |
T. Hohage, Logarithmic convergence rates of the iteratively regularised Gauß-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), 1279-1299.
doi: 10.1088/0266-5611/13/5/012.![]() ![]() ![]() |
[21] |
S. Hubmer and R. Ramlau, Nesterov's accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional, Inverse Problems, 34 (2018), 30pp.
doi: 10.1088/1361-6420/aacebe.![]() ![]() ![]() |
[22] |
N. Ichida, T. Sato and M. Linzer, Imaging the nonlinear ultrasonic parameter of a medium, Ultrasonic Imaging, 5 (1983), 295-299.
doi: 10.1177/016173468300500401.![]() ![]() |
[23] |
O. Y. Imanuvilov and M. Yamamoto, Carleman estimate and an inverse source problem for the Kelvin-Voigt model for viscoelasticity, Inverse Problems, 35 (2019), 45pp.
doi: 10.1088/1361-6420/ab323e.![]() ![]() ![]() |
[24] |
V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006.
doi: 10.1007/0-387-32183-7.![]() ![]() ![]() |
[25] |
V. K. Ivanov, On linear problems which are not well-posed, Dokl. Akad. Nauk SSSR, 145 (1962), 270-272.
![]() ![]() |
[26] |
B. Kaltenbacher, An iteratively regularized Gauss-Newton-Halley method for solving nonlinear ill-posed problems, Numer. Math., 131 (2015), 33-57.
doi: 10.1007/s00211-014-0682-5.![]() ![]() ![]() |
[27] |
B. Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, 4 (2015), 447-491.
doi: 10.3934/eect.2015.4.447.![]() ![]() ![]() |
[28] |
B. Kaltenbacher, Periodic solutions and multiharmonic expansions for the Westervelt equation, to appear, Evol. Equ. Control Theory.
doi: 10.3934/eect.2020063.![]() ![]() |
[29] |
B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 503-523.
doi: 10.3934/dcdss.2009.2.503.![]() ![]() ![]() |
[30] |
B. Kaltenbacher and A. Klassen, On convergence and convergence rates for Ivanov and Morozov regularisation and application to some parameter identification problems in elliptic PDEs, Inverse Problems, 34 (2018), 24pp.
doi: 10.1088/1361-6420/aab739.![]() ![]() ![]() |
[31] |
B. Kaltenbacher, A. Neubauer and O.Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Series on Computational and Applied Mathematics, 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
doi: 10.1515/9783110208276.![]() ![]() ![]() |
[32] |
V. Kuznetsov, Equations of nonlinear acoustics, Soviet Physics - Acoustics, 16 (1971), 467-470.
![]() |
[33] |
M. B. Lesser and R. Seebass, The structure of a weak shock wave undergoing reflexion from a wall, J. Fluid Mech., 31 (1968), 501-528.
doi: 10.1017/S0022112068000303.![]() ![]() |
[34] |
M. J. Lighthill, Viscosity effects in sound waves of finite amplitude, in Surveys in Mechanics, Cambridge, at the University Press, 1956, 250–351.
![]() ![]() |
[35] |
D. Lorenz and N. Worliczek, Necessary conditions for variational regularisation schemes, Inverse Problems, 29 (2013), 19pp.
doi: 10.1088/0266-5611/29/7/075016.![]() ![]() ![]() |
[36] |
S. Meyer and M. Wilke, Optimal regularity and long-time behavior of solutions for the Westervelt equation, Appl. Math. Optim., 64 (2011), 257-271.
doi: 10.1007/s00245-011-9138-9.![]() ![]() ![]() |
[37] |
V. A. Morozov, On the solution of functional equations by the method of regularisation, Soviet Math. Dokl., 7 (1966), 414-417.
![]() ![]() |
[38] |
M. Muhr, V. Nikolić, B. Wohlmuth and L. Wunderlich, Isogeometric shape optimization for nonlinear ultrasound focusing, Evol. Equ. Control Theory, 8 (2019), 163-202.
doi: 10.3934/eect.2019010.![]() ![]() ![]() |
[39] |
A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inverse Ill-Posed Probl., 25 (2017), 381-390.
doi: 10.1515/jiip-2016-0060.![]() ![]() ![]() |
[40] |
A. Neubauer, Tikhonov-regularisation of ill-posed linear operator equations on closed convex sets, J. Approx. Theory, 53 (1988), 304-320.
doi: 10.1016/0021-9045(88)90025-1.![]() ![]() ![]() |
[41] |
A. Neubauer and O. Scherzer, A convergent rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems, Z. Anal. Anwendungen, 14 (1995), 369-377.
doi: 10.4171/ZAA/679.![]() ![]() ![]() |
[42] |
H. Ockendon and J. R. Ockendon, Waves and Compressible Flow, Texts in Applied Mathematics, 47, Springer-Verlag, New York, 2004.
doi: 10.1007/b97537.![]() ![]() ![]() |
[43] |
A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic problem, SIAM J. Control Optim., 17 (1979), 494-499.
doi: 10.1137/0317035.![]() ![]() ![]() |
[44] |
A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math., 88 (2001), 347-365.
doi: 10.1007/PL00005448.![]() ![]() ![]() |
[45] |
W. Rundell and P. E. Sacks, Reconstruction techniques for classical inverse Sturm-Liouville problems, Math. Comp., 58 (1992), 161-183.
doi: 10.1090/S0025-5718-1992-1106979-0.![]() ![]() ![]() |
[46] |
O. Scherzer, A modified Landweber iteration for solving parameter estimation problems, Appl. Math. Optim., 38 (1998), 45-68.
doi: 10.1007/s002459900081.![]() ![]() ![]() |
[47] |
T. I. Seidman and C. R. Vogel, Well-posedness and convergence of some regularisation methods for non-linear ill posed problems, Inverse Problems, 5 (1989), 227-238.
doi: 10.1088/0266-5611/5/2/008.![]() ![]() ![]() |
[48] |
F. Varray, O. Basset, P. Tortoli and C. Cachard, Extensions of nonlinear B/A parameter imaging methods for echo mode, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 58 (2011), 1232-1244.
doi: 10.1109/TUFFC.2011.1933.![]() ![]() |
[49] |
P. J. Westervelt, Parametric acoustic array, J. Acoustical Soc. Amer., 35 (1963), 535-537.
doi: 10.1121/1.1918525.![]() ![]() |
[50] |
M. Yamamoto and B. Kaltenbacher, An inverse source problem related to acoustic nonlinearity parameter imaging, to appear, Time-Dependent Problems in Imaging and Parameter Identification, Springer, 2021.
![]() |
[51] |
E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the non-linear acoustics of confined beams, Soviet Physics - Acoustics, 15 (1969), 35-40.
![]() |
[52] |
D. Zhang, X. Chen and X.-F. Gong, Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source - Theoretical analysis and computer simulations, J. Acoustical Soc. Amer., 109 (2001), 1219-1225.
doi: 10.1121/1.1344160.![]() ![]() |
[53] |
D. Zhang, X. Gong and S. Ye, Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics, J. Acoustical Soc. Amer., 99 (1996), 2397-2402.
doi: 10.1121/1.415427.![]() ![]() |
The surface Σ
Reconstructions of a smooth
Reconstructions of piecewise linear
Reconstructions of a piecewise constant
Comparison of Newton (in red) and Halley (in blue) final reconstructions under
Comparison of Newton (in red) and Halley (in blue) final reconstructions and norm differences of the
Reconstructions of a piecewise linear
The leftmost figure shows reconstructions of