doi: 10.3934/ipi.2021021

Quantum tomography and the quantum Radon transform

1. 

Instituto de Ciencias Matemáticas (CSIC - UAM - UC3M - UCM) ICMAT and Depto. de Matemáticas, Univ. Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain

2. 

Dpto. de Teoría de la señal y comunicaciones, Univ. Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain

* Corresponding author: Alberto Ibort

Received  July 2019 Revised  February 2021 Early access  March 2021

A general framework for the tomographical description of states, that includes, among other tomographical schemes, the classical Radon transform, quantum state tomography and group quantum tomography, in the setting of $ C^* $-algebras is presented. Given a $ C^* $-algebra, the main ingredients for a tomographical description of its states are identified: A generalized sampling theory and a positive transform. A generalization of the notion of dual tomographic pair provides the background for a sampling theory on $ C^* $-algebras and, an extension of Bochner's theorem for functions of positive type, the positive transform.

The abstract theory is realized by using dynamical systems, that is, groups represented on $ C^* $-algebra. Using a fiducial state and the corresponding GNS construction, explicit expressions for tomograms associated with states defined by density operators on the corresponding Hilbert spade are obtained. In particular a general quantum version of the classical definition of the Radon transform is presented. The theory is completed by proving that if the representation of the group is square integrable, the representation itself defines a dual tomographic map and explicit reconstruction formulas are obtained by making a judiciously use of the theory of frames. A few significant examples are discussed that illustrates the use and scope of the theory.

Citation: Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, doi: 10.3934/ipi.2021021
References:
[1]

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces, Dover Publ., New York, 1963.  Google Scholar

[2]

E. M. Alfsen and F. W. Shultz, State spaces of Jordan algebras, Acta Math., 140 (1978), 155-190.  doi: 10.1007/BF02392307.  Google Scholar

[3]

P. Aniello, V. I. Man'ko and G. Marmo, Frame transforms, star products and quantum mechanics on phase space, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 285304, 40 pp. doi: 10.1088/1751-8113/41/28/285304.  Google Scholar

[4]

J. Arthur, Characters, harmonic analysis and an $L^2$-Lefschetz formula, In The mathematical heritage of Hermann Weyl, Proc. Sym. Pure Math., 48 1988,167-179. doi: 10.1090/pspum/048/974334.  Google Scholar

[5]

M. Asorey, A. Ibort, G. Marmo and F. Ventriglia, Quantum Tomography twenty years later, Phys. Scr., 90 (2015), 074031. doi: 10.1088/0031-8949/90/7/074031.  Google Scholar

[6]

M. Asorey, P. Facchi, V. I. Man'ko, G. Marmo, S. Pascazio and E. C. G. Sudarshan, Generalized tomographic maps and star-product formalism, Phys. Scr., 90 (2015), 065101. doi: 10.1088/0031-8949/90/6/065101.  Google Scholar

[7]

J. Bertrand and P. Bertrand, A tomographic approach to Wigner's function, Foundations of Physics, 17 (1987), 397-405. doi: 10.1007/BF00733376.  Google Scholar

[8]

A. del Campo, V. I. Man'ko and G. Marmo, Symplectic tomography of ultracold gases in tight waveguides, Phys. Rev. A., 78 (2008), 025602. doi: 10.1103/PhysRevA.78.025602.  Google Scholar

[9]

G. CassinelliG. M. D'ArianoE. De Vito and A. Levrero, Group theoretical quantum tomography, Journal of Mathematical Physics, 41 (2000), 7940-7951.  doi: 10.1063/1.1323497.  Google Scholar

[10]

F. M. CiagliaF. Di CosmoA. Ibort and G. Marmo, Dynamical aspects in the quantizer-dequantizer formalism, Annals of Physics, 385 (2017), 769-781.  doi: 10.1016/j.aop.2017.08.025.  Google Scholar

[11]

K. Banaszek, G. M. D'Ariano, P. Kumar and M. F. Sacchi, Maximum-likelihood estimation of the density matrix, Phys. Rev., A61 (1999), 010304(R). doi: 10.1103/PhysRevA.61.010304.  Google Scholar

[12]

G. M. D'Ariano, Universal quantum estimation, Phys. Lett., A268 (2000), 151-157.  doi: 10.1016/S0375-9601(00)00164-X.  Google Scholar

[13]

G. M. D'Ariano, M. G. A. Paris and M. F. Sacchi, Quantum tomography, Advances in Imaging and Electron Physics, 128 (2003), 205-308. arXiv: quant-ph/0302028. doi: 10.1016/S1076-5670(03)80065-4.  Google Scholar

[14]

G. M. D'ArianoL. Maccone and M. Paini, Spin tomography, J. Opt. B: Qiuantum Semiclass. Opt., 5 (2003), 77-84.  doi: 10.1088/1464-4266/5/1/311.  Google Scholar

[15]

I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[16]

E. B. Davies, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge, U.K. 1995. doi: 10.1017/CBO9780511623721.  Google Scholar

[17] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford university press, 1947.   Google Scholar
[18]

J. Diximier, $C^*$-Algebras, North Holand Publ. Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[19]

M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21 (1976), 209-243.  doi: 10.1016/0022-1236(76)90079-3.  Google Scholar

[20]

E. Ercolessi, G. Marmo, G. Morandi and N. Mukunda, Wigner distributions in Quantum Mechanics, J. Phys.: Conf. Ser., 87 (2007), 012010. doi: 10.1088/1742-6596/87/1/012010.  Google Scholar

[21]

G. Esposito, G. Marmo and G. Sudarshan, From Classical to Quantum Mechanics, Cambridge Univ. Press, Cambridge 2004. doi: 10.1017/CBO9780511610929.  Google Scholar

[22]

P. Facchi and M. Ligabò, Classical and quantum aspects of tomography, AIP Conference Proceedings., 1260 (2010), 3-34.   Google Scholar

[23]

F. Falceto, L. Ferro, A. Ibort and G. Marmo, Reduction of Lie-Jordan Banach algebras and quantum states, J. Phys. A: Math. Theor., 46 (2013), 015201, 14 pp. doi: 10.1088/1751-8113/46/1/015201.  Google Scholar

[24]

H.R. Fernández-Morales, A.G. García, M.A. Hernández-Medina and M.J. Muñoz-Bouzo, On Some Sampling-Related Frames in $U$-Invariant Spaces, Abstract and Applied Analysis (2013), 761620, 14 pp. doi: 10.1155/2013/761620.  Google Scholar

[25]

M. Frank and D. R. Larson, Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator Theory, 48 (2002), 273-314.   Google Scholar

[26]

A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag. Berlin 1990. doi: 10.1007/978-3-642-83854-5.  Google Scholar

[27]

A. G. García, A brief walk through sampling theory, Advances in Imaging and Electron Physics, 124 (2002), 63-137.  doi: 10.1016/S1076-5670(02)80042-8.  Google Scholar

[28]

A. G. GarcíaM. A. Hernández-Medina and G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, Journal of Mathematical Analysis and Applications, 337 (2008), 69-84.  doi: 10.1016/j.jmaa.2007.03.083.  Google Scholar

[29]

A. G. García, M. A. Hernández-Medina and A. Ibort, Towards a quantum sampling theory: the case of finite groups, In: Marmo G., Martín de Diego D., Muñoz Lecanda M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham., (2019) 203-223. arXiv:1510.08134 [math-ph]. doi: 10.1007/978-3-030-24748-5_11.  Google Scholar

[30]

I. Gel'fand and M. Naimark, On the embedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S., 12 (1943), 197-217.   Google Scholar

[31]

A. Gleason, Measures on the closed subspaces of a Hilbert space, Indiana Univ. Math. J., 6 (1957), 885-893.  doi: 10.1512/iumj.1957.6.56050.  Google Scholar

[32]

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag. Berlin, 1996. doi: 10.1007/978-3-642-61458-3.  Google Scholar

[33]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni and F. Ventriglia, An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 79 (2009), 065013. doi: 10.1088/0031-8949/79/06/065013.  Google Scholar

[34]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni, F. Ventrigilia, A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties, J. Phys. A: Math. Theor., 42 (2009), 155302, 12 pp. doi: 10.1088/1751-8113/42/15/155302.  Google Scholar

[35]

A. IbortV. I. Man'koG. MarmoA. Simoni and F. Ventriglia, On the tomographic picture of quantum mechanics, Phys. Let. A., 374 (2010), 2614-2617.  doi: 10.1016/j.physleta.2010.04.056.  Google Scholar

[36]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni and F. Ventriglia, Pedagogical presentation of a $C^*$-algebraic approach to quantum tomography, Phys. Scr., 84 (2011), 065006. doi: 10.1088/0031-8949/84/06/065006.  Google Scholar

[37]

A. Ibort, A. López Yela and J. Moro, A new algorithm for computing branching rules and Clebsch-Gordan coefficients of unitary representations of compact groups, J. of Math. Phys., 58 (2017), 101702, 21 pp. doi: 10.1063/1.5004259.  Google Scholar

[38]

J. M. Jauch, Foundations of Quantum Mechanics, Reading, Mass.-London-Don Mills, Ont. 1968.  Google Scholar

[39]

A. W. Joshi, Elements of Group Theory for Physicists, Third edition. A Halsted Press Book. John Wiley & Sons, Inc., New York, 1982  Google Scholar

[40]

R. V. Kadison, A representation theory for commutative topological algebras, Mem. Amer. Math. Soc., 7 (1951), 39 pp.  Google Scholar

[41]

G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser Boston, Inc., Boston, MA, 1994.  Google Scholar

[42]

A. López-Yela, On the Tomographic Description of Quantum Systems: Theory and Applications, Ph.D. Thesis. Universidad Carlos III de Madrid (2015). http://hdl.handle.net/10016/22629 Google Scholar

[43]

V. I. Man'ko and O. V. Man'ko, Spin state tomography, J. of Experimental and Theoretical Physics, 85 (1997), 430-434.  doi: 10.1134/1.558326.  Google Scholar

[44]

O. V. Man'koV. I. Man'ko and G. Marmo, Alternative commutation relations, star products and tomography, Journal of Physics A: Mathematical and General, 35 (2002), 699-719.  doi: 10.1088/0305-4470/35/3/315.  Google Scholar

[45]

V. I. Man'ko, G. Marmo, A. Simoni, A. Stern and E. C. G. Sudarshan, On the meaning and interpretation of tomography in abstract Hilbert spaces, Phys. Lett. A, 351 (2006) 1-12. doi: 10.1016/j.physleta.2005.10.063.  Google Scholar

[46]

M. A. Na${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$mark, Normed Rings, P. Noordhoff N. V., Groningen 1964.  Google Scholar

[47]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[48]

J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann., 102 (1930), 370-427.  doi: 10.1007/BF01782352.  Google Scholar

[49]

D.-G. Welsch, T. Opatrny and W. Vogel, II Homodyne Detection and Quantum-State Reconstruction, Prog. Opt., vol. 39 (1999), 63-211. doi: 10.1016/S0079-6638(08)70389-5.  Google Scholar

[50] G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, Academic Press, 1979.   Google Scholar
[51]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Proc. Sympos. Appl. Math., 27, Amer. Math. Soc., Providence, R.I., 1982. doi: 10.1090/psapm/027/692055.  Google Scholar

[52]

M. Reed and B. Simon, Methods of modern mathematical physics. Vol. 1: Functional analysis, revised and enlarged edition., Academic Press., USA 1980. Google Scholar

[53]

I. E. Segal, Irreducible representations of operator algebras, Bull. Am. Math. Soc., 53 (1947), 73-88.  doi: 10.1090/S0002-9904-1947-08742-5.  Google Scholar

[54]

D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Physical Review Letters, 70 (1993), 1244. doi: 10.1103/PhysRevLett.70.1244.  Google Scholar

[55]

M. H. Stone, On one-parameter unitary groups in Hilbert Space, Ann. Math., 33 (1932), 643-648.  doi: 10.2307/1968538.  Google Scholar

[56]

K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Physical Review A, 40 (1989), 2847. doi: 10.1103/PhysRevA.40.2847.  Google Scholar

[57]

E. Wigner, On the Quantum Correction for Thermodinamic Equilibrium, Phys. Rev., 40 (1932), 749-759.  doi: 10.1103/PhysRev.40.749.  Google Scholar

show all references

References:
[1]

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces, Dover Publ., New York, 1963.  Google Scholar

[2]

E. M. Alfsen and F. W. Shultz, State spaces of Jordan algebras, Acta Math., 140 (1978), 155-190.  doi: 10.1007/BF02392307.  Google Scholar

[3]

P. Aniello, V. I. Man'ko and G. Marmo, Frame transforms, star products and quantum mechanics on phase space, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 285304, 40 pp. doi: 10.1088/1751-8113/41/28/285304.  Google Scholar

[4]

J. Arthur, Characters, harmonic analysis and an $L^2$-Lefschetz formula, In The mathematical heritage of Hermann Weyl, Proc. Sym. Pure Math., 48 1988,167-179. doi: 10.1090/pspum/048/974334.  Google Scholar

[5]

M. Asorey, A. Ibort, G. Marmo and F. Ventriglia, Quantum Tomography twenty years later, Phys. Scr., 90 (2015), 074031. doi: 10.1088/0031-8949/90/7/074031.  Google Scholar

[6]

M. Asorey, P. Facchi, V. I. Man'ko, G. Marmo, S. Pascazio and E. C. G. Sudarshan, Generalized tomographic maps and star-product formalism, Phys. Scr., 90 (2015), 065101. doi: 10.1088/0031-8949/90/6/065101.  Google Scholar

[7]

J. Bertrand and P. Bertrand, A tomographic approach to Wigner's function, Foundations of Physics, 17 (1987), 397-405. doi: 10.1007/BF00733376.  Google Scholar

[8]

A. del Campo, V. I. Man'ko and G. Marmo, Symplectic tomography of ultracold gases in tight waveguides, Phys. Rev. A., 78 (2008), 025602. doi: 10.1103/PhysRevA.78.025602.  Google Scholar

[9]

G. CassinelliG. M. D'ArianoE. De Vito and A. Levrero, Group theoretical quantum tomography, Journal of Mathematical Physics, 41 (2000), 7940-7951.  doi: 10.1063/1.1323497.  Google Scholar

[10]

F. M. CiagliaF. Di CosmoA. Ibort and G. Marmo, Dynamical aspects in the quantizer-dequantizer formalism, Annals of Physics, 385 (2017), 769-781.  doi: 10.1016/j.aop.2017.08.025.  Google Scholar

[11]

K. Banaszek, G. M. D'Ariano, P. Kumar and M. F. Sacchi, Maximum-likelihood estimation of the density matrix, Phys. Rev., A61 (1999), 010304(R). doi: 10.1103/PhysRevA.61.010304.  Google Scholar

[12]

G. M. D'Ariano, Universal quantum estimation, Phys. Lett., A268 (2000), 151-157.  doi: 10.1016/S0375-9601(00)00164-X.  Google Scholar

[13]

G. M. D'Ariano, M. G. A. Paris and M. F. Sacchi, Quantum tomography, Advances in Imaging and Electron Physics, 128 (2003), 205-308. arXiv: quant-ph/0302028. doi: 10.1016/S1076-5670(03)80065-4.  Google Scholar

[14]

G. M. D'ArianoL. Maccone and M. Paini, Spin tomography, J. Opt. B: Qiuantum Semiclass. Opt., 5 (2003), 77-84.  doi: 10.1088/1464-4266/5/1/311.  Google Scholar

[15]

I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[16]

E. B. Davies, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge, U.K. 1995. doi: 10.1017/CBO9780511623721.  Google Scholar

[17] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford university press, 1947.   Google Scholar
[18]

J. Diximier, $C^*$-Algebras, North Holand Publ. Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[19]

M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21 (1976), 209-243.  doi: 10.1016/0022-1236(76)90079-3.  Google Scholar

[20]

E. Ercolessi, G. Marmo, G. Morandi and N. Mukunda, Wigner distributions in Quantum Mechanics, J. Phys.: Conf. Ser., 87 (2007), 012010. doi: 10.1088/1742-6596/87/1/012010.  Google Scholar

[21]

G. Esposito, G. Marmo and G. Sudarshan, From Classical to Quantum Mechanics, Cambridge Univ. Press, Cambridge 2004. doi: 10.1017/CBO9780511610929.  Google Scholar

[22]

P. Facchi and M. Ligabò, Classical and quantum aspects of tomography, AIP Conference Proceedings., 1260 (2010), 3-34.   Google Scholar

[23]

F. Falceto, L. Ferro, A. Ibort and G. Marmo, Reduction of Lie-Jordan Banach algebras and quantum states, J. Phys. A: Math. Theor., 46 (2013), 015201, 14 pp. doi: 10.1088/1751-8113/46/1/015201.  Google Scholar

[24]

H.R. Fernández-Morales, A.G. García, M.A. Hernández-Medina and M.J. Muñoz-Bouzo, On Some Sampling-Related Frames in $U$-Invariant Spaces, Abstract and Applied Analysis (2013), 761620, 14 pp. doi: 10.1155/2013/761620.  Google Scholar

[25]

M. Frank and D. R. Larson, Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator Theory, 48 (2002), 273-314.   Google Scholar

[26]

A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag. Berlin 1990. doi: 10.1007/978-3-642-83854-5.  Google Scholar

[27]

A. G. García, A brief walk through sampling theory, Advances in Imaging and Electron Physics, 124 (2002), 63-137.  doi: 10.1016/S1076-5670(02)80042-8.  Google Scholar

[28]

A. G. GarcíaM. A. Hernández-Medina and G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, Journal of Mathematical Analysis and Applications, 337 (2008), 69-84.  doi: 10.1016/j.jmaa.2007.03.083.  Google Scholar

[29]

A. G. García, M. A. Hernández-Medina and A. Ibort, Towards a quantum sampling theory: the case of finite groups, In: Marmo G., Martín de Diego D., Muñoz Lecanda M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol 229. Springer, Cham., (2019) 203-223. arXiv:1510.08134 [math-ph]. doi: 10.1007/978-3-030-24748-5_11.  Google Scholar

[30]

I. Gel'fand and M. Naimark, On the embedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S., 12 (1943), 197-217.   Google Scholar

[31]

A. Gleason, Measures on the closed subspaces of a Hilbert space, Indiana Univ. Math. J., 6 (1957), 885-893.  doi: 10.1512/iumj.1957.6.56050.  Google Scholar

[32]

R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag. Berlin, 1996. doi: 10.1007/978-3-642-61458-3.  Google Scholar

[33]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni and F. Ventriglia, An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 79 (2009), 065013. doi: 10.1088/0031-8949/79/06/065013.  Google Scholar

[34]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni, F. Ventrigilia, A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties, J. Phys. A: Math. Theor., 42 (2009), 155302, 12 pp. doi: 10.1088/1751-8113/42/15/155302.  Google Scholar

[35]

A. IbortV. I. Man'koG. MarmoA. Simoni and F. Ventriglia, On the tomographic picture of quantum mechanics, Phys. Let. A., 374 (2010), 2614-2617.  doi: 10.1016/j.physleta.2010.04.056.  Google Scholar

[36]

A. Ibort, V. I. Man'ko, G. Marmo, A. Simoni and F. Ventriglia, Pedagogical presentation of a $C^*$-algebraic approach to quantum tomography, Phys. Scr., 84 (2011), 065006. doi: 10.1088/0031-8949/84/06/065006.  Google Scholar

[37]

A. Ibort, A. López Yela and J. Moro, A new algorithm for computing branching rules and Clebsch-Gordan coefficients of unitary representations of compact groups, J. of Math. Phys., 58 (2017), 101702, 21 pp. doi: 10.1063/1.5004259.  Google Scholar

[38]

J. M. Jauch, Foundations of Quantum Mechanics, Reading, Mass.-London-Don Mills, Ont. 1968.  Google Scholar

[39]

A. W. Joshi, Elements of Group Theory for Physicists, Third edition. A Halsted Press Book. John Wiley & Sons, Inc., New York, 1982  Google Scholar

[40]

R. V. Kadison, A representation theory for commutative topological algebras, Mem. Amer. Math. Soc., 7 (1951), 39 pp.  Google Scholar

[41]

G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser Boston, Inc., Boston, MA, 1994.  Google Scholar

[42]

A. López-Yela, On the Tomographic Description of Quantum Systems: Theory and Applications, Ph.D. Thesis. Universidad Carlos III de Madrid (2015). http://hdl.handle.net/10016/22629 Google Scholar

[43]

V. I. Man'ko and O. V. Man'ko, Spin state tomography, J. of Experimental and Theoretical Physics, 85 (1997), 430-434.  doi: 10.1134/1.558326.  Google Scholar

[44]

O. V. Man'koV. I. Man'ko and G. Marmo, Alternative commutation relations, star products and tomography, Journal of Physics A: Mathematical and General, 35 (2002), 699-719.  doi: 10.1088/0305-4470/35/3/315.  Google Scholar

[45]

V. I. Man'ko, G. Marmo, A. Simoni, A. Stern and E. C. G. Sudarshan, On the meaning and interpretation of tomography in abstract Hilbert spaces, Phys. Lett. A, 351 (2006) 1-12. doi: 10.1016/j.physleta.2005.10.063.  Google Scholar

[46]

M. A. Na${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}}$mark, Normed Rings, P. Noordhoff N. V., Groningen 1964.  Google Scholar

[47]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[48]

J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann., 102 (1930), 370-427.  doi: 10.1007/BF01782352.  Google Scholar

[49]

D.-G. Welsch, T. Opatrny and W. Vogel, II Homodyne Detection and Quantum-State Reconstruction, Prog. Opt., vol. 39 (1999), 63-211. doi: 10.1016/S0079-6638(08)70389-5.  Google Scholar

[50] G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, Academic Press, 1979.   Google Scholar
[51]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Proc. Sympos. Appl. Math., 27, Amer. Math. Soc., Providence, R.I., 1982. doi: 10.1090/psapm/027/692055.  Google Scholar

[52]

M. Reed and B. Simon, Methods of modern mathematical physics. Vol. 1: Functional analysis, revised and enlarged edition., Academic Press., USA 1980. Google Scholar

[53]

I. E. Segal, Irreducible representations of operator algebras, Bull. Am. Math. Soc., 53 (1947), 73-88.  doi: 10.1090/S0002-9904-1947-08742-5.  Google Scholar

[54]

D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Physical Review Letters, 70 (1993), 1244. doi: 10.1103/PhysRevLett.70.1244.  Google Scholar

[55]

M. H. Stone, On one-parameter unitary groups in Hilbert Space, Ann. Math., 33 (1932), 643-648.  doi: 10.2307/1968538.  Google Scholar

[56]

K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Physical Review A, 40 (1989), 2847. doi: 10.1103/PhysRevA.40.2847.  Google Scholar

[57]

E. Wigner, On the Quantum Correction for Thermodinamic Equilibrium, Phys. Rev., 40 (1932), 749-759.  doi: 10.1103/PhysRev.40.749.  Google Scholar

Figure 1.  Left: Section of a body irradiated with gamma radiation and the measure of the tomogram $ \mathcal{W}(X, \theta) $. Right: Scheme of quantum state tomography. The quantum tomogram $ \mathcal{W}_\rho (X, \theta) $ obtained by homodyne measuring the quadrature operator $ \mathbf{X}_\theta = X -\textbf{Q}\cos\theta-\textbf{P}\sin\theta $
Figure 2.  Tomographic problem
Figure 3.  Tomographic map $ U $
Figure 4.  Sampling diagram
Figure 5.  Positive Transform diagram
Figure 6.  Bloch's sphere representing states of a particle with spin $ 1/2 $
[1]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[2]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[3]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[4]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[5]

Søren Eilers. C *-algebras associated to dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 177-192. doi: 10.3934/dcds.2006.15.177

[6]

L. Brandolini, M. Rigoli and A. G. Setti. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements, 1996, 2: 101-107.

[7]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[8]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[9]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[10]

Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008

[11]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[12]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[13]

Seok-Jin Kang and Jae-Hoon Kwon. Quantum affine algebras, combinatorics of Young walls, and global bases. Electronic Research Announcements, 2002, 8: 35-46.

[14]

Adina Juratoni, Flavius Pater, Olivia Bundău. Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations. Electronic Research Announcements, 2012, 19: 49-57. doi: 10.3934/era.2012.19.49

[15]

Lavinia Roncoroni. Exact lumping of feller semigroups: A $C^{\star}$-algebras approach. Conference Publications, 2015, 2015 (special) : 965-973. doi: 10.3934/proc.2015.0965

[16]

Jie Yang, Haibo Chen. Multiplicity and concentration of positive solutions to the fractional Kirchhoff type problems involving sign-changing weight functions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021096

[17]

Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2221-2252. doi: 10.3934/dcdss.2019143

[18]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[19]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[20]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (69)
  • HTML views (209)
  • Cited by (0)

Other articles
by authors

[Back to Top]