• Previous Article
    A note on transmission eigenvalues in electromagnetic scattering theory
  • IPI Home
  • This Issue
  • Next Article
    Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion
October  2021, 15(5): 975-997. doi: 10.3934/ipi.2021024

Near-field imaging for an obstacle above rough surfaces with limited aperture data

School of Mathematical Sciences, Heilongjiang University, Heilongjiang Provincial Key Laboratory of Complex Systems Theory and Computation, Harbin, 150080, China

* Corresponding author: Lei Zhang

Received  August 2020 Revised  February 2021 Published  October 2021 Early access  March 2021

This paper is concerned with the scattering and inverse scattering problems for a point source incident wave by an obstacle embedded in a two-layered background medium. It is a nontrivial extension of the previous theoretical work on the inverse obstacle scattering in an unbounded structure [Commun. Comput. Phys., 26 (2019), 1274-1306]. By the potential theory of boundary integral equations, we derive a novel integral equation formula for the scattering problem, then the well-posedness of the system is proved. Based on the singularity analysis of integral kernels, we presented a numerical method for the integral equations. Furthermore, we developed a reverse time migration method for the corresponding composite inverse scattering problem with the limited aperture data. Numerical experiments show that the proposed method is effective to recover the support of an unknown obstacle and the shape, location of the surfaces.

Citation: Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024
References:
[1]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187.  doi: 10.1137/130916266.  Google Scholar

[2]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899.  doi: 10.1137/130944485.  Google Scholar

[3]

G. Bao and L. Zhang, Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32 (2016), 085002. doi: 10.1088/0266-5611/32/8/085002.  Google Scholar

[4]

G. BaoH. LiuP. Li and L. Zhang, Inverse obstacle scattering in an unbounded structure, Commun. Comput. Phys., 26 (2019), 1274-1306.  doi: 10.4208/cicp.2019.js60.01.  Google Scholar

[5]

C. Burkard and R. Potthast, A multi-section approach for rough surface reconstruction via the Kirsch-Kress scheme, Inverse Problems, 26 (2010), 045007. doi: 10.1088/0266-5611/26/4/045007.  Google Scholar

[6]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Applied Mathematical Sciences, 188. Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[7]

S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math., 58 (1998), 1774-1790.  doi: 10.1137/S0036139996309722.  Google Scholar

[8]

S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough interfaces and inhomogeneous layers, SIAM J. Math. Anal., 30 (1999), 559-583.  doi: 10.1137/S0036141097328932.  Google Scholar

[9]

S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., 37 (2005), 598-618.  doi: 10.1137/040615523.  Google Scholar

[10]

S. N. Chandler-WildeE. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough unbounded surfaces in three dimensions, SIAM J. Appl. Math., 66 (2006), 1002-1026.  doi: 10.1137/050635262.  Google Scholar

[11]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2013), 085005. doi: 10.1088/0266-5611/29/8/085005.  Google Scholar

[12]

Z. Chen and G. Huang, Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007. doi: 10.1088/0266-5611/31/5/055007.  Google Scholar

[13]

F. J. Claerbout, Toward a unified theory of reflector mapping, Geophysics, 36 (1971), 467-481.  doi: 10.1190/1.1440185.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[15]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, SIAM, Philadelphia, 2013. doi: 10.1137/1.9781611973167.ch1.  Google Scholar

[16]

Y. HeP. Li and J. Shen, A new spectral method for numerical solution of the unbounded rough surface scattering problem, J. Comput. Phys., 275 (2014), 608-625.  doi: 10.1016/j.jcp.2014.07.026.  Google Scholar

[17]

G. Hu, X. Liu, B. Zhang and H. Zhang, A non-iterative approach to inverse elastic scattering by unbounded rigid rough surfaces, Inverse Problems, 35 (2019), 025007. doi: 10.1088/1361-6420/aaf3d6.  Google Scholar

[18]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003. doi: 10.1088/0266-5611/28/2/025003.  Google Scholar

[19]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Method Appl. Sci., 11 (1989), 789-804.  doi: 10.1002/mma.1670110605.  Google Scholar

[20]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[21]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane, Inverse Problems, 16 (2000), 1541-1559.  doi: 10.1088/0266-5611/16/5/323.  Google Scholar

[22]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Probl. Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[23]

J. LiG. Sun and R. Zhang, The numerical solution of scattering by infinite rough interfaces based on the integral equation method, Comput. Math. Appl., 71 (2016), 1491-1502.  doi: 10.1016/j.camwa.2016.02.031.  Google Scholar

[24]

P. LiH. Wu and W. Zheng, Electromagnetic scattering by unbounded rough surfaces, SIAM J. Math. Anal., 43 (2011), 1205-1231.  doi: 10.1137/100806217.  Google Scholar

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Methods Appl. Sci., 35 (2012), 2166-2184.  doi: 10.1002/mma.2560.  Google Scholar

[26]

P. Li, J. Wang and L. Zhang, Inverse obstacle scattering for Maxwell's equations in an unbounded structure, Inverse Problems, 35 (2019), 095002. doi: 10.1088/1361-6420/ab1f1b.  Google Scholar

[27]

X. LiuB. Zhang and H. Zhang, A direct imaging method for inverse scattering by unbounded rough surfaces, SIAM J. Imaging Sci., 11 (2018), 1629-1650.  doi: 10.1137/18M1166031.  Google Scholar

[28]

X. LiuB. Zhang and H. Zhang, Near-field imaging of an unbounded elastic rough surface with a direct imaging method, SIAM J. Appl. Math., 79 (2019), 153-176.  doi: 10.1137/18M1181407.  Google Scholar

[29]

Y. Lu and B. Zhang, Direct and inverse scattering problem by an unbounded rough interface with buried obstacles, preprint, arXiv: 1610.03515v1. Google Scholar

[30]

A. MeierT. ArensS. N. Chandler-Wilde and A. Kirsch, A Nystr$\ddot{o}$m method for a class of integral equationson the real line with applications to scattering by diffraction gratings and rough surfaces, J. Integral Equations Appl., 12 (2000), 281-321.  doi: 10.1216/jiea/1020282209.  Google Scholar

[31]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces, Math. Methods Appl. Sci., 26 (2003), 463-488.  doi: 10.1002/mma.361.  Google Scholar

[32]

H. Zhang and B. Zhang, A novel integral equation for scattering by locally rough surfaces and application to the inverse problem, SIAM J. Appl. Math., 73 (2013), 1811-1829.  doi: 10.1137/130908324.  Google Scholar

[33]

L. ZhangF. Ma and J. Wang, Regularized conjugate gradient method with fast multipole acceleration for wave scattering from 1D fractal rough surface, Wave Motion, 50 (2013), 41-56.  doi: 10.1016/j.wavemoti.2012.06.005.  Google Scholar

[34]

Y. Zhang and G. Zhang, One-step extrapolation method for reverse time migration, Geophysics, 74 (2009), A29–A33. doi: 10.1190/1.3123476.  Google Scholar

show all references

References:
[1]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187.  doi: 10.1137/130916266.  Google Scholar

[2]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899.  doi: 10.1137/130944485.  Google Scholar

[3]

G. Bao and L. Zhang, Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32 (2016), 085002. doi: 10.1088/0266-5611/32/8/085002.  Google Scholar

[4]

G. BaoH. LiuP. Li and L. Zhang, Inverse obstacle scattering in an unbounded structure, Commun. Comput. Phys., 26 (2019), 1274-1306.  doi: 10.4208/cicp.2019.js60.01.  Google Scholar

[5]

C. Burkard and R. Potthast, A multi-section approach for rough surface reconstruction via the Kirsch-Kress scheme, Inverse Problems, 26 (2010), 045007. doi: 10.1088/0266-5611/26/4/045007.  Google Scholar

[6]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Applied Mathematical Sciences, 188. Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[7]

S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math., 58 (1998), 1774-1790.  doi: 10.1137/S0036139996309722.  Google Scholar

[8]

S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough interfaces and inhomogeneous layers, SIAM J. Math. Anal., 30 (1999), 559-583.  doi: 10.1137/S0036141097328932.  Google Scholar

[9]

S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., 37 (2005), 598-618.  doi: 10.1137/040615523.  Google Scholar

[10]

S. N. Chandler-WildeE. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough unbounded surfaces in three dimensions, SIAM J. Appl. Math., 66 (2006), 1002-1026.  doi: 10.1137/050635262.  Google Scholar

[11]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2013), 085005. doi: 10.1088/0266-5611/29/8/085005.  Google Scholar

[12]

Z. Chen and G. Huang, Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007. doi: 10.1088/0266-5611/31/5/055007.  Google Scholar

[13]

F. J. Claerbout, Toward a unified theory of reflector mapping, Geophysics, 36 (1971), 467-481.  doi: 10.1190/1.1440185.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[15]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, SIAM, Philadelphia, 2013. doi: 10.1137/1.9781611973167.ch1.  Google Scholar

[16]

Y. HeP. Li and J. Shen, A new spectral method for numerical solution of the unbounded rough surface scattering problem, J. Comput. Phys., 275 (2014), 608-625.  doi: 10.1016/j.jcp.2014.07.026.  Google Scholar

[17]

G. Hu, X. Liu, B. Zhang and H. Zhang, A non-iterative approach to inverse elastic scattering by unbounded rigid rough surfaces, Inverse Problems, 35 (2019), 025007. doi: 10.1088/1361-6420/aaf3d6.  Google Scholar

[18]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003. doi: 10.1088/0266-5611/28/2/025003.  Google Scholar

[19]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Method Appl. Sci., 11 (1989), 789-804.  doi: 10.1002/mma.1670110605.  Google Scholar

[20]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[21]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane, Inverse Problems, 16 (2000), 1541-1559.  doi: 10.1088/0266-5611/16/5/323.  Google Scholar

[22]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Probl. Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[23]

J. LiG. Sun and R. Zhang, The numerical solution of scattering by infinite rough interfaces based on the integral equation method, Comput. Math. Appl., 71 (2016), 1491-1502.  doi: 10.1016/j.camwa.2016.02.031.  Google Scholar

[24]

P. LiH. Wu and W. Zheng, Electromagnetic scattering by unbounded rough surfaces, SIAM J. Math. Anal., 43 (2011), 1205-1231.  doi: 10.1137/100806217.  Google Scholar

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Methods Appl. Sci., 35 (2012), 2166-2184.  doi: 10.1002/mma.2560.  Google Scholar

[26]

P. Li, J. Wang and L. Zhang, Inverse obstacle scattering for Maxwell's equations in an unbounded structure, Inverse Problems, 35 (2019), 095002. doi: 10.1088/1361-6420/ab1f1b.  Google Scholar

[27]

X. LiuB. Zhang and H. Zhang, A direct imaging method for inverse scattering by unbounded rough surfaces, SIAM J. Imaging Sci., 11 (2018), 1629-1650.  doi: 10.1137/18M1166031.  Google Scholar

[28]

X. LiuB. Zhang and H. Zhang, Near-field imaging of an unbounded elastic rough surface with a direct imaging method, SIAM J. Appl. Math., 79 (2019), 153-176.  doi: 10.1137/18M1181407.  Google Scholar

[29]

Y. Lu and B. Zhang, Direct and inverse scattering problem by an unbounded rough interface with buried obstacles, preprint, arXiv: 1610.03515v1. Google Scholar

[30]

A. MeierT. ArensS. N. Chandler-Wilde and A. Kirsch, A Nystr$\ddot{o}$m method for a class of integral equationson the real line with applications to scattering by diffraction gratings and rough surfaces, J. Integral Equations Appl., 12 (2000), 281-321.  doi: 10.1216/jiea/1020282209.  Google Scholar

[31]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces, Math. Methods Appl. Sci., 26 (2003), 463-488.  doi: 10.1002/mma.361.  Google Scholar

[32]

H. Zhang and B. Zhang, A novel integral equation for scattering by locally rough surfaces and application to the inverse problem, SIAM J. Appl. Math., 73 (2013), 1811-1829.  doi: 10.1137/130908324.  Google Scholar

[33]

L. ZhangF. Ma and J. Wang, Regularized conjugate gradient method with fast multipole acceleration for wave scattering from 1D fractal rough surface, Wave Motion, 50 (2013), 41-56.  doi: 10.1016/j.wavemoti.2012.06.005.  Google Scholar

[34]

Y. Zhang and G. Zhang, One-step extrapolation method for reverse time migration, Geophysics, 74 (2009), A29–A33. doi: 10.1190/1.3123476.  Google Scholar

Figure 1.  Reconstruction of an obstacle and the rough surface
Figure 2.  Reconstruction of an obstacle and the rough surface
[1]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[2]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems & Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691

[5]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[6]

Guanghui Hu, Andrea Mantile, Mourad Sini, Tao Yin. Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles. Inverse Problems & Imaging, 2020, 14 (6) : 1025-1056. doi: 10.3934/ipi.2020054

[7]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[8]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[9]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems & Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[10]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[11]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[12]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[13]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[14]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[15]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[16]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[17]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems & Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[18]

Ting Zhou. Reconstructing electromagnetic obstacles by the enclosure method. Inverse Problems & Imaging, 2010, 4 (3) : 547-569. doi: 10.3934/ipi.2010.4.547

[19]

Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453

[20]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

2020 Impact Factor: 1.639

Article outline

Figures and Tables

[Back to Top]