• Previous Article
    A regularization operator for source identification for elliptic PDEs
  • IPI Home
  • This Issue
  • Next Article
    Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems
doi: 10.3934/ipi.2021024

Near-field imaging for an obstacle above rough surfaces with limited aperture data

School of Mathematical Sciences, Heilongjiang University, Heilongjiang Provincial Key Laboratory of Complex Systems Theory and Computation, Harbin, 150080, China

* Corresponding author: Lei Zhang

Received  August 2020 Revised  February 2021 Published  March 2021

This paper is concerned with the scattering and inverse scattering problems for a point source incident wave by an obstacle embedded in a two-layered background medium. It is a nontrivial extension of the previous theoretical work on the inverse obstacle scattering in an unbounded structure [Commun. Comput. Phys., 26 (2019), 1274-1306]. By the potential theory of boundary integral equations, we derive a novel integral equation formula for the scattering problem, then the well-posedness of the system is proved. Based on the singularity analysis of integral kernels, we presented a numerical method for the integral equations. Furthermore, we developed a reverse time migration method for the corresponding composite inverse scattering problem with the limited aperture data. Numerical experiments show that the proposed method is effective to recover the support of an unknown obstacle and the shape, location of the surfaces.

Citation: Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, doi: 10.3934/ipi.2021024
References:
[1]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187.  doi: 10.1137/130916266.  Google Scholar

[2]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899.  doi: 10.1137/130944485.  Google Scholar

[3]

G. Bao and L. Zhang, Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32 (2016), 085002. doi: 10.1088/0266-5611/32/8/085002.  Google Scholar

[4]

G. BaoH. LiuP. Li and L. Zhang, Inverse obstacle scattering in an unbounded structure, Commun. Comput. Phys., 26 (2019), 1274-1306.  doi: 10.4208/cicp.2019.js60.01.  Google Scholar

[5]

C. Burkard and R. Potthast, A multi-section approach for rough surface reconstruction via the Kirsch-Kress scheme, Inverse Problems, 26 (2010), 045007. doi: 10.1088/0266-5611/26/4/045007.  Google Scholar

[6]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Applied Mathematical Sciences, 188. Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[7]

S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math., 58 (1998), 1774-1790.  doi: 10.1137/S0036139996309722.  Google Scholar

[8]

S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough interfaces and inhomogeneous layers, SIAM J. Math. Anal., 30 (1999), 559-583.  doi: 10.1137/S0036141097328932.  Google Scholar

[9]

S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., 37 (2005), 598-618.  doi: 10.1137/040615523.  Google Scholar

[10]

S. N. Chandler-WildeE. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough unbounded surfaces in three dimensions, SIAM J. Appl. Math., 66 (2006), 1002-1026.  doi: 10.1137/050635262.  Google Scholar

[11]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2013), 085005. doi: 10.1088/0266-5611/29/8/085005.  Google Scholar

[12]

Z. Chen and G. Huang, Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007. doi: 10.1088/0266-5611/31/5/055007.  Google Scholar

[13]

F. J. Claerbout, Toward a unified theory of reflector mapping, Geophysics, 36 (1971), 467-481.  doi: 10.1190/1.1440185.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[15]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, SIAM, Philadelphia, 2013. doi: 10.1137/1.9781611973167.ch1.  Google Scholar

[16]

Y. HeP. Li and J. Shen, A new spectral method for numerical solution of the unbounded rough surface scattering problem, J. Comput. Phys., 275 (2014), 608-625.  doi: 10.1016/j.jcp.2014.07.026.  Google Scholar

[17]

G. Hu, X. Liu, B. Zhang and H. Zhang, A non-iterative approach to inverse elastic scattering by unbounded rigid rough surfaces, Inverse Problems, 35 (2019), 025007. doi: 10.1088/1361-6420/aaf3d6.  Google Scholar

[18]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003. doi: 10.1088/0266-5611/28/2/025003.  Google Scholar

[19]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Method Appl. Sci., 11 (1989), 789-804.  doi: 10.1002/mma.1670110605.  Google Scholar

[20]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[21]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane, Inverse Problems, 16 (2000), 1541-1559.  doi: 10.1088/0266-5611/16/5/323.  Google Scholar

[22]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Probl. Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[23]

J. LiG. Sun and R. Zhang, The numerical solution of scattering by infinite rough interfaces based on the integral equation method, Comput. Math. Appl., 71 (2016), 1491-1502.  doi: 10.1016/j.camwa.2016.02.031.  Google Scholar

[24]

P. LiH. Wu and W. Zheng, Electromagnetic scattering by unbounded rough surfaces, SIAM J. Math. Anal., 43 (2011), 1205-1231.  doi: 10.1137/100806217.  Google Scholar

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Methods Appl. Sci., 35 (2012), 2166-2184.  doi: 10.1002/mma.2560.  Google Scholar

[26]

P. Li, J. Wang and L. Zhang, Inverse obstacle scattering for Maxwell's equations in an unbounded structure, Inverse Problems, 35 (2019), 095002. doi: 10.1088/1361-6420/ab1f1b.  Google Scholar

[27]

X. LiuB. Zhang and H. Zhang, A direct imaging method for inverse scattering by unbounded rough surfaces, SIAM J. Imaging Sci., 11 (2018), 1629-1650.  doi: 10.1137/18M1166031.  Google Scholar

[28]

X. LiuB. Zhang and H. Zhang, Near-field imaging of an unbounded elastic rough surface with a direct imaging method, SIAM J. Appl. Math., 79 (2019), 153-176.  doi: 10.1137/18M1181407.  Google Scholar

[29]

Y. Lu and B. Zhang, Direct and inverse scattering problem by an unbounded rough interface with buried obstacles, preprint, arXiv: 1610.03515v1. Google Scholar

[30]

A. MeierT. ArensS. N. Chandler-Wilde and A. Kirsch, A Nystr$\ddot{o}$m method for a class of integral equationson the real line with applications to scattering by diffraction gratings and rough surfaces, J. Integral Equations Appl., 12 (2000), 281-321.  doi: 10.1216/jiea/1020282209.  Google Scholar

[31]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces, Math. Methods Appl. Sci., 26 (2003), 463-488.  doi: 10.1002/mma.361.  Google Scholar

[32]

H. Zhang and B. Zhang, A novel integral equation for scattering by locally rough surfaces and application to the inverse problem, SIAM J. Appl. Math., 73 (2013), 1811-1829.  doi: 10.1137/130908324.  Google Scholar

[33]

L. ZhangF. Ma and J. Wang, Regularized conjugate gradient method with fast multipole acceleration for wave scattering from 1D fractal rough surface, Wave Motion, 50 (2013), 41-56.  doi: 10.1016/j.wavemoti.2012.06.005.  Google Scholar

[34]

Y. Zhang and G. Zhang, One-step extrapolation method for reverse time migration, Geophysics, 74 (2009), A29–A33. doi: 10.1190/1.3123476.  Google Scholar

show all references

References:
[1]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187.  doi: 10.1137/130916266.  Google Scholar

[2]

G. Bao and P. Li, Near-field imaging of infinite rough surfaces in dielectric media, SIAM J. Imaging Sci., 7 (2014), 867-899.  doi: 10.1137/130944485.  Google Scholar

[3]

G. Bao and L. Zhang, Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32 (2016), 085002. doi: 10.1088/0266-5611/32/8/085002.  Google Scholar

[4]

G. BaoH. LiuP. Li and L. Zhang, Inverse obstacle scattering in an unbounded structure, Commun. Comput. Phys., 26 (2019), 1274-1306.  doi: 10.4208/cicp.2019.js60.01.  Google Scholar

[5]

C. Burkard and R. Potthast, A multi-section approach for rough surface reconstruction via the Kirsch-Kress scheme, Inverse Problems, 26 (2010), 045007. doi: 10.1088/0266-5611/26/4/045007.  Google Scholar

[6]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Applied Mathematical Sciences, 188. Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[7]

S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite rough surfaces, SIAM J. Appl. Math., 58 (1998), 1774-1790.  doi: 10.1137/S0036139996309722.  Google Scholar

[8]

S. N. Chandler-Wilde and B. Zhang, Scattering of electromagnetic waves by rough interfaces and inhomogeneous layers, SIAM J. Math. Anal., 30 (1999), 559-583.  doi: 10.1137/S0036141097328932.  Google Scholar

[9]

S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational methods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., 37 (2005), 598-618.  doi: 10.1137/040615523.  Google Scholar

[10]

S. N. Chandler-WildeE. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough unbounded surfaces in three dimensions, SIAM J. Appl. Math., 66 (2006), 1002-1026.  doi: 10.1137/050635262.  Google Scholar

[11]

J. Chen, Z. Chen and G. Huang, Reverse time migration for extended obstacles: Acoustic waves, Inverse Problems, 29 (2013), 085005. doi: 10.1088/0266-5611/29/8/085005.  Google Scholar

[12]

Z. Chen and G. Huang, Reverse time migration for reconstructing extended obstacles in the half space, Inverse Problems, 31 (2015), 055007. doi: 10.1088/0266-5611/31/5/055007.  Google Scholar

[13]

F. J. Claerbout, Toward a unified theory of reflector mapping, Geophysics, 36 (1971), 467-481.  doi: 10.1190/1.1440185.  Google Scholar

[14]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4$^{th}$ edition, Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[15]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, SIAM, Philadelphia, 2013. doi: 10.1137/1.9781611973167.ch1.  Google Scholar

[16]

Y. HeP. Li and J. Shen, A new spectral method for numerical solution of the unbounded rough surface scattering problem, J. Comput. Phys., 275 (2014), 608-625.  doi: 10.1016/j.jcp.2014.07.026.  Google Scholar

[17]

G. Hu, X. Liu, B. Zhang and H. Zhang, A non-iterative approach to inverse elastic scattering by unbounded rigid rough surfaces, Inverse Problems, 35 (2019), 025007. doi: 10.1088/1361-6420/aaf3d6.  Google Scholar

[18]

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003. doi: 10.1088/0266-5611/28/2/025003.  Google Scholar

[19]

A. Kirsch, Surface gradients and continuity properties for some integral operators in classical scattering theory, Math. Method Appl. Sci., 11 (1989), 789-804.  doi: 10.1002/mma.1670110605.  Google Scholar

[20]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345-360.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[21]

R. Kress and T. Tran, Inverse scattering for a locally perturbed half-plane, Inverse Problems, 16 (2000), 1541-1559.  doi: 10.1088/0266-5611/16/5/323.  Google Scholar

[22]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data, Inverse Probl. Imaging, 7 (2013), 757-775.  doi: 10.3934/ipi.2013.7.757.  Google Scholar

[23]

J. LiG. Sun and R. Zhang, The numerical solution of scattering by infinite rough interfaces based on the integral equation method, Comput. Math. Appl., 71 (2016), 1491-1502.  doi: 10.1016/j.camwa.2016.02.031.  Google Scholar

[24]

P. LiH. Wu and W. Zheng, Electromagnetic scattering by unbounded rough surfaces, SIAM J. Math. Anal., 43 (2011), 1205-1231.  doi: 10.1137/100806217.  Google Scholar

[25]

P. Li and J. Shen, Analysis of the scattering by an unbounded rough surface, Math. Methods Appl. Sci., 35 (2012), 2166-2184.  doi: 10.1002/mma.2560.  Google Scholar

[26]

P. Li, J. Wang and L. Zhang, Inverse obstacle scattering for Maxwell's equations in an unbounded structure, Inverse Problems, 35 (2019), 095002. doi: 10.1088/1361-6420/ab1f1b.  Google Scholar

[27]

X. LiuB. Zhang and H. Zhang, A direct imaging method for inverse scattering by unbounded rough surfaces, SIAM J. Imaging Sci., 11 (2018), 1629-1650.  doi: 10.1137/18M1166031.  Google Scholar

[28]

X. LiuB. Zhang and H. Zhang, Near-field imaging of an unbounded elastic rough surface with a direct imaging method, SIAM J. Appl. Math., 79 (2019), 153-176.  doi: 10.1137/18M1181407.  Google Scholar

[29]

Y. Lu and B. Zhang, Direct and inverse scattering problem by an unbounded rough interface with buried obstacles, preprint, arXiv: 1610.03515v1. Google Scholar

[30]

A. MeierT. ArensS. N. Chandler-Wilde and A. Kirsch, A Nystr$\ddot{o}$m method for a class of integral equationson the real line with applications to scattering by diffraction gratings and rough surfaces, J. Integral Equations Appl., 12 (2000), 281-321.  doi: 10.1216/jiea/1020282209.  Google Scholar

[31]

B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces, Math. Methods Appl. Sci., 26 (2003), 463-488.  doi: 10.1002/mma.361.  Google Scholar

[32]

H. Zhang and B. Zhang, A novel integral equation for scattering by locally rough surfaces and application to the inverse problem, SIAM J. Appl. Math., 73 (2013), 1811-1829.  doi: 10.1137/130908324.  Google Scholar

[33]

L. ZhangF. Ma and J. Wang, Regularized conjugate gradient method with fast multipole acceleration for wave scattering from 1D fractal rough surface, Wave Motion, 50 (2013), 41-56.  doi: 10.1016/j.wavemoti.2012.06.005.  Google Scholar

[34]

Y. Zhang and G. Zhang, One-step extrapolation method for reverse time migration, Geophysics, 74 (2009), A29–A33. doi: 10.1190/1.3123476.  Google Scholar

Figure 1.  Reconstruction of an obstacle and the rough surface
Figure 2.  Reconstruction of an obstacle and the rough surface
[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[5]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[6]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[7]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[8]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[9]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[10]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[11]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[12]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[13]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[14]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[15]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, 2021, 15 (3) : 555-597. doi: 10.3934/ipi.2021005

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[18]

Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257

[19]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[20]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

2019 Impact Factor: 1.373

Article outline

Figures and Tables

[Back to Top]