This short note was motivated by our efforts to investigate whether there exists a half plane free of transmission eigenvalues for Maxwell's equations. This question is related to solvability of the time domain interior transmission problem which plays a fundamental role in the justification of linear sampling and factorization methods with time dependent data. Our original goal was to adapt semiclassical analysis techniques developed in [
Citation: |
[1] |
E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581.
![]() |
[2] |
F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014.
doi: 10.1007/978-1-4614-8827-9.![]() ![]() ![]() |
[3] |
F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016.
doi: 10.1137/1.9781611974461.![]() ![]() ![]() |
[4] |
F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.
doi: 10.1137/1.9780898719406.![]() ![]() ![]() |
[5] |
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338.![]() ![]() ![]() |
[6] |
F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.
doi: 10.1504/IJCSM.2010.033932.![]() ![]() ![]() |
[7] |
F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE.
![]() |
[8] |
F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.
doi: 10.1137/20M1335121.![]() ![]() ![]() |
[9] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019.
doi: 10.1007/978-3-030-30351-8.![]() ![]() ![]() |
[10] |
D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp.
doi: 10.1088/0266-5611/29/10/104008.![]() ![]() ![]() |
[11] |
D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.
doi: 10.1080/00036811.2016.1210788.![]() ![]() ![]() |
[12] |
D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp.
doi: 10.1088/0266-5611/31/3/035006.![]() ![]() ![]() |
[13] |
D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.
doi: 10.1093/qjmam/40.2.189.![]() ![]() ![]() |
[14] |
H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.
doi: 10.1016/j.matpur.2018.10.004.![]() ![]() ![]() |
[15] |
M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.
doi: 10.4310/MRL.2011.v18.n2.a7.![]() ![]() ![]() |
[16] |
A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.
doi: 10.1093/imamat/37.3.213.![]() ![]() ![]() |
[17] |
A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015.
doi: 10.1007/978-3-319-11086-8.![]() ![]() ![]() |
[18] |
Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp.
doi: 10.1088/0266-5611/28/7/075005.![]() ![]() ![]() |
[19] |
H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp.
doi: 10.1007/s00526-017-1143-7.![]() ![]() ![]() |
[20] |
V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.
doi: 10.3934/ipi.2017017.![]() ![]() ![]() |
[21] |
G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.
doi: 10.1007/s00220-015-2311-2.![]() ![]() ![]() |
[22] |
G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.
doi: 10.1007/s00208-015-1329-2.![]() ![]() ![]() |
[23] |
G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.
doi: 10.2140/apde.2018.11.213.![]() ![]() ![]() |