\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on transmission eigenvalues in electromagnetic scattering theory

The author F. Cakoni is supported in part by the AFOSR Grant FA9550-20-1-0024 and NSF Grant DMS-1813492.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This short note was motivated by our efforts to investigate whether there exists a half plane free of transmission eigenvalues for Maxwell's equations. This question is related to solvability of the time domain interior transmission problem which plays a fundamental role in the justification of linear sampling and factorization methods with time dependent data. Our original goal was to adapt semiclassical analysis techniques developed in [21,23] to prove that for some combination of electromagnetic parameters, the transmission eigenvalues lie in a strip around the real axis. Unfortunately we failed. To try to understand why, we looked at the particular example of spherically symmetric media, which provided us with some insight on why we couldn't prove the above result. Hence this paper reports our findings on the location of all transmission eigenvalues and the existence of complex transmission eigenvalues for Maxwell's equations for spherically stratified media. We hope that these results can provide reasonable conjectures for general electromagnetic media.

    Mathematics Subject Classification: Primary: 35Q61, 35P25, 35P20; Secondary: 35R30, 78A46.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581.
    [2] F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.
    [3] F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016. doi: 10.1137/1.9781611974461.
    [4] F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9780898719406.
    [5] F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.
    [6] F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.  doi: 10.1504/IJCSM.2010.033932.
    [7] F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE.
    [8] F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.  doi: 10.1137/20M1335121.
    [9] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.
    [10] D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp. doi: 10.1088/0266-5611/29/10/104008.
    [11] D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.  doi: 10.1080/00036811.2016.1210788.
    [12] D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp. doi: 10.1088/0266-5611/31/3/035006.
    [13] D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.  doi: 10.1093/qjmam/40.2.189.
    [14] H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.  doi: 10.1016/j.matpur.2018.10.004.
    [15] M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.
    [16] A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.
    [17] A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015. doi: 10.1007/978-3-319-11086-8.
    [18] Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp. doi: 10.1088/0266-5611/28/7/075005.
    [19] H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp. doi: 10.1007/s00526-017-1143-7.
    [20] V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.  doi: 10.3934/ipi.2017017.
    [21] G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.
    [22] G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.
    [23] G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.  doi: 10.2140/apde.2018.11.213.
  • 加载中
SHARE

Article Metrics

HTML views(2603) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return