doi: 10.3934/ipi.2021025

A note on transmission eigenvalues in electromagnetic scattering theory

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA

2. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: jingni.xiao@rutgers.edu

Received  October 2020 Revised  January 2021 Published  March 2021

Fund Project: The author F. Cakoni is supported in part by the AFOSR Grant FA9550-20-1-0024 and NSF Grant DMS-1813492

This short note was motivated by our efforts to investigate whether there exists a half plane free of transmission eigenvalues for Maxwell's equations. This question is related to solvability of the time domain interior transmission problem which plays a fundamental role in the justification of linear sampling and factorization methods with time dependent data. Our original goal was to adapt semiclassical analysis techniques developed in [21,23] to prove that for some combination of electromagnetic parameters, the transmission eigenvalues lie in a strip around the real axis. Unfortunately we failed. To try to understand why, we looked at the particular example of spherically symmetric media, which provided us with some insight on why we couldn't prove the above result. Hence this paper reports our findings on the location of all transmission eigenvalues and the existence of complex transmission eigenvalues for Maxwell's equations for spherically stratified media. We hope that these results can provide reasonable conjectures for general electromagnetic media.

Citation: Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, doi: 10.3934/ipi.2021025
References:
[1]

E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581. Google Scholar

[2]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016. doi: 10.1137/1.9781611974461.  Google Scholar

[4]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9780898719406.  Google Scholar

[5]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[6]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.  doi: 10.1504/IJCSM.2010.033932.  Google Scholar

[7]

F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE. Google Scholar

[8]

F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.  doi: 10.1137/20M1335121.  Google Scholar

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[10]

D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp. doi: 10.1088/0266-5611/29/10/104008.  Google Scholar

[11]

D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.  doi: 10.1080/00036811.2016.1210788.  Google Scholar

[12]

D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp. doi: 10.1088/0266-5611/31/3/035006.  Google Scholar

[13]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.  doi: 10.1093/qjmam/40.2.189.  Google Scholar

[14]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.  doi: 10.1016/j.matpur.2018.10.004.  Google Scholar

[15]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.  Google Scholar

[16]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[17]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[18]

Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp. doi: 10.1088/0266-5611/28/7/075005.  Google Scholar

[19]

H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp. doi: 10.1007/s00526-017-1143-7.  Google Scholar

[20]

V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.  doi: 10.3934/ipi.2017017.  Google Scholar

[21]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.  Google Scholar

[22]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.  Google Scholar

[23]

G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.  doi: 10.2140/apde.2018.11.213.  Google Scholar

show all references

References:
[1]

E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, accepted in Anal. PDE, arXiv: 1901.00581. Google Scholar

[2]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, vol. 188 of Applied Mathematical Sciences, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2016. doi: 10.1137/1.9781611974461.  Google Scholar

[4]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, vol. 80 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9780898719406.  Google Scholar

[5]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[6]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem, Int. J. Comput. Sci. Math., 3 (2010), 142-167.  doi: 10.1504/IJCSM.2010.033932.  Google Scholar

[7]

F. Cakoni, P. Monk and V. Selgas, Analysis of the linear sampling method for imaging penetrable obstacles in the time domain, accepted in Anal. PDE. Google Scholar

[8]

F. Cakoni and H.-M. Nguyen, On the discreteness of transmission eigenvalues for the Maxwell's equations, SIAM J. Math. Anal., 53 (2021), 888-913.  doi: 10.1137/20M1335121.  Google Scholar

[9]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 4$^{th}$ edition, Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8.  Google Scholar

[10]

D. Colton and Y.-J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues, Inverse Problems, 29 (2013), 104008, 6 pp. doi: 10.1088/0266-5611/29/10/104008.  Google Scholar

[11]

D. Colton and Y.-J. Leung, The existence of complex transmission eigenvalues for spherically stratified media, Appl. Anal., 96 (2017), 39-47.  doi: 10.1080/00036811.2016.1210788.  Google Scholar

[12]

D. Colton, Y.-J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media, Inverse Problems, 31 (2015), 035006, 19 pp. doi: 10.1088/0266-5611/31/3/035006.  Google Scholar

[13]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in a penetrable medium, Quart. J. Mech. Appl. Math., 40 (1987), 189-212.  doi: 10.1093/qjmam/40.2.189.  Google Scholar

[14]

H. Haddar and S. Meng, The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations, J. Math. Pures Appl., 120 (2018), 1-32.  doi: 10.1016/j.matpur.2018.10.004.  Google Scholar

[15]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds on transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.  Google Scholar

[16]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.  Google Scholar

[17]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell's equations, vol. 190 of Applied Mathematical Sciences, Springer, Cham, 2015. doi: 10.1007/978-3-319-11086-8.  Google Scholar

[18]

Y.-J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media, Inverse Problems, 28 (2012), 075005, 9 pp. doi: 10.1088/0266-5611/28/7/075005.  Google Scholar

[19]

H.-M. Nguyen and Q.-H. Nguyen, Discreteness of interior transmission eigenvalues revisited, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 51, 38 pp. doi: 10.1007/s00526-017-1143-7.  Google Scholar

[20]

V. Petkov and G. Vodev, Localization of the interior transmission eigenvalues for a ball, Inverse Probl. Imaging, 11 (2017), 355-372.  doi: 10.3934/ipi.2017017.  Google Scholar

[21]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.  Google Scholar

[22]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.  Google Scholar

[23]

G. Vodev, High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues, Anal. PDE, 11 (2018), 213-236.  doi: 10.2140/apde.2018.11.213.  Google Scholar

[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[3]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[4]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[6]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[7]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[8]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[9]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[12]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[13]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[14]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[15]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[18]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[19]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[20]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

2019 Impact Factor: 1.373

Article outline

[Back to Top]