• Previous Article
    Limited-angle CT reconstruction with generalized shrinkage operators as regularizers
  • IPI Home
  • This Issue
  • Next Article
    Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks
doi: 10.3934/ipi.2021026

Two-dimensional inverse scattering for quasi-linear biharmonic operator

1. 

Biomimetics and Intelligent Systems Group, P.O. BOX 8000, FIN-90014 University of Oulu, Finland

2. 

Research Unit of Mathematical Sciences, P.O. BOX 3000, FIN-90014 University of Oulu, Finland

3. 

Department of Mathematics and Statistics, P.O. BOX 68, FI-00014 University of Helsinki

* Corresponding author: Jaakko Kultima

Received  October 2020 Revised  February 2021 Published  March 2021

The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space $ W^1_{\infty}( \mathbb{{R}}^2) $. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.

Citation: Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, doi: 10.3934/ipi.2021026
References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151-218.   Google Scholar

[2]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, Berlin Heidelberg, 2008. Google Scholar

[3]

F. Cakoni and D. Colton, A Qualitative Approach in Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[4]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.  Google Scholar

[5]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Problems ans Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.  Google Scholar

[6]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.  Google Scholar

[9]

M. Harju, On the Direct and Inverse Scattering Problems for a Nonlinear Three-Dimensional Schrödinger Equation, PhD-thesis, University of Oulu, 2010. Google Scholar

[10]

K. KrupchykM. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, Journal of Functional Analysis, 262 (2012), 1781-1801.  doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[11]

K. KrupchykM. Lassas and G. Uhlmann, Inverse boundary value problems for the perturbed polyharmonic operator, Trans Amer. Math. Soc., 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.  Google Scholar

[12]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, 1972.  Google Scholar

[13]

B. Pausander, Scattering for the beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791–822. arXiv: 0903.3777v2 [math.AP]. doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[14]

V. S. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 332002. doi: 10.1088/1751-8113/42/33/332002.  Google Scholar

[15]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of Mathematical Physics, 53 (2012), 123522. doi: 10.1063/1.4769825.  Google Scholar

[16]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 35 (2020), 065002. doi: 10.1088/1361-6420/ab7d2d.  Google Scholar

[17]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[18]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[19]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Problems and Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.  Google Scholar

[20]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-0821-1.  Google Scholar

show all references

References:
[1]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151-218.   Google Scholar

[2]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, Berlin Heidelberg, 2008. Google Scholar

[3]

F. Cakoni and D. Colton, A Qualitative Approach in Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[4]

G. Fotopoulos and M. Harju, Inverse scattering with fixed observation angle data in 2D, Inv. Prob. Sci. Eng., 25 (2017), 1492-1507.  doi: 10.1080/17415977.2016.1267170.  Google Scholar

[5]

G. FotopoulosM. Harju and V. Serov, Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D, Inverse Problems ans Imaging, 7 (2013), 183-197.  doi: 10.3934/ipi.2013.7.183.  Google Scholar

[6]

G. Fotopoulos and V. Serov, Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrödinger operator, Inv. Prob. Sci. Eng., 24 (2016), 692-710.  doi: 10.1080/17415977.2015.1055263.  Google Scholar

[7]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[8]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.  Google Scholar

[9]

M. Harju, On the Direct and Inverse Scattering Problems for a Nonlinear Three-Dimensional Schrödinger Equation, PhD-thesis, University of Oulu, 2010. Google Scholar

[10]

K. KrupchykM. Lassas and G. Uhlmann, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, Journal of Functional Analysis, 262 (2012), 1781-1801.  doi: 10.1016/j.jfa.2011.11.021.  Google Scholar

[11]

K. KrupchykM. Lassas and G. Uhlmann, Inverse boundary value problems for the perturbed polyharmonic operator, Trans Amer. Math. Soc., 366 (2014), 95-112.  doi: 10.1090/S0002-9947-2013-05713-3.  Google Scholar

[12]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, 1972.  Google Scholar

[13]

B. Pausander, Scattering for the beam equation in low dimensions, Indiana Univ. Math. J., 59 (2010), 791–822. arXiv: 0903.3777v2 [math.AP]. doi: 10.1512/iumj.2010.59.3966.  Google Scholar

[14]

V. S. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 332002. doi: 10.1088/1751-8113/42/33/332002.  Google Scholar

[15]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of Mathematical Physics, 53 (2012), 123522. doi: 10.1063/1.4769825.  Google Scholar

[16]

T. Tyni, Numerical results for Saito's uniqueness theorem in inverse scattering theory, Inverse Problems, 35 (2020), 065002. doi: 10.1088/1361-6420/ab7d2d.  Google Scholar

[17]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

[18]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002. doi: 10.1088/1361-6420/aa873e.  Google Scholar

[19]

T. Tyni and V. Serov, Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line, Inverse Problems and Imaging, 13 (2019), 159-175.  doi: 10.3934/ipi.2019009.  Google Scholar

[20]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-0821-1.  Google Scholar

Figure 6), but their supports are intersecting">Figure 1.  The potentials $ \beta $ for Examples 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right). In Example 1 we have only potential $ V $ which is a characteristic function of an ellipse. In Example 2 $ V $ is the characteristic function of an L-shaped domain and $ \overrightarrow{W} = (0,\varphi_2)\sin(|u|) $ has one component, where $ \varphi_2 $ is a smooth bump function in a circular domain. In Example 3 both components of $ \overrightarrow{W} = (\varphi_1\frac{|u|^2}{1+|u|^2},\varphi_2|u|^2) $ are multiplied by smooth bump functions $ \varphi_1 $ and $ \varphi_2 $ supported in ellipses located at the top and bottom right in the figure, respectively. The coefficient $ \varphi_3 $ of potential $ V $ is also a smooth bump function supported in an ellipse, located in the middle-left side of the figure. In example 4 all coefficients are smooth bump functions (see also Figure 6), but their supports are intersecting
Figure 2.  The scattered fields for Examples 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right) with $ k = 25 $. The locations of the supports of the potentials are presented in black. Here the incident field is travelling from the left to the right
Figure 3.  Example 1. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $
Figure 4.  Example 2. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $. This example shows recovery of corners and recovery of a shape with piece-wise smooth boundary
Figure 5.  Example 3. Left: The unknown target $ \beta $. Right: The numerical reconstruction $ \beta_ \mathrm{num} $. We see that weak potentials are quite difficult to detect while stronger potentials are clearly visible in comparison, as is expected
Figure 6.  Example 4. Top left $ V(x,1) $, top middle $ W_1(x,1) $ and top right $ W_2(x,1) $. Bottom left: The unknown target $ \beta $. Bottom right: The numerical reconstruction $ \beta_ \mathrm{num} $. In this example the supports of potentials $ V $, $ W_1 $ and $ W_2 $ overlap. We can not distinguish these functions from each other
[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[4]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[5]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[6]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[7]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[8]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[9]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[13]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[14]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[15]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

[16]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[17]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[18]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[19]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[20]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

2019 Impact Factor: 1.373

Article outline

Figures and Tables

[Back to Top]