• Previous Article
    Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem
  • IPI Home
  • This Issue
  • Next Article
    Existence and stability of electromagnetic Stekloff eigenvalues with a trace class modification
doi: 10.3934/ipi.2021027

On Tikhonov-type regularization with approximated penalty terms

Industrial Mathematics Institute, Johannes Kepler University, A-4040 Linz, Austria

Received  November 2020 Revised  January 2021 Published  March 2021

In this paper, we deal with (nonlinear) ill-posed problems that are regularized by minimizing Tikhonov-type functionals. If the minimization is tedious for some penalty term $ P_0 $, we approximate it by a family of penalty terms $ ({P_\beta}) $ having nicer properties and analyze what happens as $ \beta\to 0 $.

We investigate the discrepancy principle for the choice of the regularization parameter and apply all results to linear problems with sparsity constraints. Numerical results show that the proposed method yields good results.

Citation: Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, doi: 10.3934/ipi.2021027
References:
[1]

A. B. Bakushinskii and A. Goncharsky, Iterative Methods for the Solution of Incorrect Problems, Nauka, Moscow, 1989, In Russian. Google Scholar

[2]

A. B. Bakushinskii and M. Y. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, vol. 577 of Mathematics and Its Applications, Springer, Dordrecht, 2004.  Google Scholar

[3]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.  Google Scholar

[4]

S. F. Gilyazov and N. L. Gol'dman, Regularization of Ill-Posed Problems by Iteration Methods, Kluwer, Dordrecht, 2000. Google Scholar

[5]

M. Hanke, A regularization Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.  doi: 10.1088/0266-5611/13/1/007.  Google Scholar

[6]

P. C. Hansen and J. S. Jørgensen, AIR tools II: Algebraic iterative reconstruction methods, improved implementation, Numer. Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.  Google Scholar

[7]

F. Hinterer, S. Hubmer and R. Ramlau, A note on the minimization of a Tikhonov functional with $\ell^1$-penalty, Inverse Problems, 36 (2020), 074001 19pp. doi: 10.1088/1361-6420/ab89c2.  Google Scholar

[8]

K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, vol. 22 of Series on Applied Mathematics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.  Google Scholar

[9]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, no. 6 in Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[10]

C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), 43-71.  doi: 10.1145/355984.355989.  Google Scholar

[11]

C. Pöschl, E. Resmerita and O. Scherzer, Discretization of variational regularization in Banach spaces, Inverse Problems, 26 (2010), 105017. doi: 10.1088/0266-5611/26/10/105017.  Google Scholar

[12]

R. Ramlau and C. A. Zarzer, On the minimization of a Tikhonov functional with a non-convex sparsity constraint, Electron. Trans. Numer. Anal., 39 (2012), 467-505.   Google Scholar

[13]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, vol. 167 of Applied Mathematical Sciences, Springer, New York, 2009.  Google Scholar

[14]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods In Banach Spaces, vol. 10 of Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, 2012. doi: 10.1515/9783110255720.  Google Scholar

[15]

A. N. Tikhonov, A. S. Leonov and A. G. Yagola, Nonlinear Ill-Posed Problems, no. 14 in Vol. 1 and 2, Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1998. doi: 10.1007/978-94-017-5167-4.  Google Scholar

show all references

References:
[1]

A. B. Bakushinskii and A. Goncharsky, Iterative Methods for the Solution of Incorrect Problems, Nauka, Moscow, 1989, In Russian. Google Scholar

[2]

A. B. Bakushinskii and M. Y. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, vol. 577 of Mathematics and Its Applications, Springer, Dordrecht, 2004.  Google Scholar

[3]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.  Google Scholar

[4]

S. F. Gilyazov and N. L. Gol'dman, Regularization of Ill-Posed Problems by Iteration Methods, Kluwer, Dordrecht, 2000. Google Scholar

[5]

M. Hanke, A regularization Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.  doi: 10.1088/0266-5611/13/1/007.  Google Scholar

[6]

P. C. Hansen and J. S. Jørgensen, AIR tools II: Algebraic iterative reconstruction methods, improved implementation, Numer. Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.  Google Scholar

[7]

F. Hinterer, S. Hubmer and R. Ramlau, A note on the minimization of a Tikhonov functional with $\ell^1$-penalty, Inverse Problems, 36 (2020), 074001 19pp. doi: 10.1088/1361-6420/ab89c2.  Google Scholar

[8]

K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, vol. 22 of Series on Applied Mathematics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.  Google Scholar

[9]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, no. 6 in Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[10]

C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), 43-71.  doi: 10.1145/355984.355989.  Google Scholar

[11]

C. Pöschl, E. Resmerita and O. Scherzer, Discretization of variational regularization in Banach spaces, Inverse Problems, 26 (2010), 105017. doi: 10.1088/0266-5611/26/10/105017.  Google Scholar

[12]

R. Ramlau and C. A. Zarzer, On the minimization of a Tikhonov functional with a non-convex sparsity constraint, Electron. Trans. Numer. Anal., 39 (2012), 467-505.   Google Scholar

[13]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, vol. 167 of Applied Mathematical Sciences, Springer, New York, 2009.  Google Scholar

[14]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods In Banach Spaces, vol. 10 of Radon Series on Computational and Applied Mathematics, de Gruyter, Berlin, 2012. doi: 10.1515/9783110255720.  Google Scholar

[15]

A. N. Tikhonov, A. S. Leonov and A. G. Yagola, Nonlinear Ill-Posed Problems, no. 14 in Vol. 1 and 2, Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1998. doi: 10.1007/978-94-017-5167-4.  Google Scholar

Figure 1.  Exact solution and reconstructions for noise level $ \delta = 1 $%
Figure 2.  Exact solution and reconstructions for noise level $ \delta = 10 $%
[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021023

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[5]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[6]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

[7]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[8]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[9]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[10]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[11]

Guanwei Chen, Martin Schechter. Multiple solutions for Schrödinger lattice systems with asymptotically linear terms and perturbed terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021124

[12]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[13]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[14]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[15]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[16]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[17]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[18]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation Algorithm for Spherical $ k $-Means Problem with Penalty. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021067

[19]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[20]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

2019 Impact Factor: 1.373

Article outline

Figures and Tables

[Back to Top]