[1]
|
B. Adcock and A. C. Hansen, Generalized sampling and infinite-dimensional compressed sensing, Found. Comput. Math., 16 (2016), 1263-1323.
doi: 10.1007/s10208-015-9276-6.
|
[2]
|
S. Bahmani and J. Romberg, Efficient compressive phase retrieval with constrained sensing vectors, IEEE Neural Information Processing Systems, 1 (2015), 523–531. Available from: https://dl.acm.org/doi/abs/10.5555/2969239.2969298.
|
[3]
|
R. Balan, B. G. Bodmann, P. G. Cassazza and D. Edidin, Painless reconstruction from magnitudes of frame coefficients, J. Fourier Anal. Appl., 15 (2009), 488-501.
doi: 10.1007/s00041-009-9065-1.
|
[4]
|
A. S. Bandeira, J. Cahill, D. G. Mixon and A. A. Nelson, Saving phase: Injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal., 37 (2014), 106-125.
doi: 10.1016/j.acha.2013.10.002.
|
[5]
|
A. S. Bandeira, Y. Chen and D. G. Mixon, Phase retrieval from power spectra of masked signals, Inform. Inference: A Journal of the IMA, 3 (2014), 83-102.
doi: 10.1093/imaiai/iau002.
|
[6]
|
T. T. Cai, X. Li and Z. Ma, Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow, Ann. Statist., 44 (2016), 2221-2251.
doi: 10.1214/16-AOS1443.
|
[7]
|
E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014.
|
[8]
|
E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninshi, Phase retrieval via matrix completion, SIAM J. Imaging Sci., 6 (2013), 199-225.
doi: 10.1137/110848074.
|
[9]
|
E. J. Candès and X. Li, Solving quadratic equations via phaselift when there are about as many equations as unknowns, Found. Comput. Math., 149 (2013), 1-10.
doi: 10.1007/s10208-013-9162-z.
|
[10]
|
E. J. Candès, X. Li and M. Soltanolkotabi, Phase retrieval from coded diffraction patterns, Appl. Comput. Harmon. Anal., 39 (2015), 277-299.
doi: 10.1016/j.acha.2014.09.004.
|
[11]
|
E. J. Candès, X. Li and M. Soltanolkotabi, Phase retrieval via Wirtinger Flow: Theory and algorithms, IEEE Trans. Inform. Theory, 61 (2015), 1985-2007.
doi: 10.1109/TIT.2015.2399924.
|
[12]
|
E. J. Candès and Y. Plan, A probabilistic and RIP-less theory of compressed sensing, IEEE Trans. Inform. Theory, 57 (2011), 7235-7254.
doi: 10.1109/TIT.2011.2161794.
|
[13]
|
E. J. Candès, T. Stromher and V. Voroninshi, PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66 (2013), 1241-1274.
doi: 10.1002/cpa.21432.
|
[14]
|
E. J. Candès and T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507.
|
[15]
|
E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans. Inform. Theory, 56 (2010), 2053-2080.
doi: 10.1109/TIT.2010.2044061.
|
[16]
|
A. Chai, M. Moscoso and G. Papanicolaou, Array imaging using intensity-only measurements, Inverse Probl., 27 (2011), 015005, 16 pp.
doi: 10.1088/0266-5611/27/1/015005.
|
[17]
|
Y. Chen and E. J. Candès, Solving random quadratic systems of equations is nearly as easy as solving linear systems, Comm. Pure Appl. Math., 70 (2015), 739-747.
doi: 10.1002/cpa.21638.
|
[18]
|
J. V. Corbett, The Pauli problem, state reconstruction and quantum-real numbers, Rep. Math. Phys., 57 (2006), 53-68.
doi: 10.1016/S0034-4877(06)80008-X.
|
[19]
|
J. C. Dainty and J. R. Fienup, Phase retrieval and image reconstruction for astronomy, in Image Recovery: Theory and Application, Academic Press, (1987), 231–275. Available from: https://www.researchgate.net/publication/247171131_Phase_retrieval_and_image_reconstruction_for_astronomy.
|
[20]
|
L. Demanet and P. Hand, Stable optimizationless recovery from phaseless linear measurements, J. Fourier Anal. Appl., 20 (2014), 199-221.
doi: 10.1007/s00041-013-9305-2.
|
[21]
|
A. Fannjiang and W. Liao, Phase retrieval with random phase illumination, Inverse Problems, 28 (2012), 075008, 20 pp.
doi: 10.1364/JOSAA.29.001847.
|
[22]
|
J. R. Fienup, Phase retrieval algorithms: A comparison, Appl. Opt., 21 (1982), 2758-2769.
doi: 10.1364/AO.21.002758.
|
[23]
|
R. W. Gerchberg and W. O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik, 35 (1972), 237–246. Available from: https://www.researchgate.net/publication/221725051_A_practical_algorithm_for_the_determination_of_phase_from_image_and_diffraction_plane_pictures.
|
[24]
|
D. Gross, Recovering low rank matrices from few coefficients in any basis, IEEE Trans. Inform. Theory, 57 (2011), 1548-1566.
doi: 10.1109/TIT.2011.2104999.
|
[25]
|
D. Gross, F. Krahmer and R. Kueng, A partial derandomization of PhaseLift using spherical designs, J. Fourier Anal. Appl., 21 (2015), 229-266.
doi: 10.1007/s00041-014-9361-2.
|
[26]
|
D. Gross, F. Krahmer and R. Kueng, Improved recovery guarantees for phase retrieval from coded diffraction patterns, Appl. Comput. Harmon. Anal., 42 (2017), 37-64.
doi: 10.1016/j.acha.2015.05.004.
|
[27]
|
R. W. Harrison, Phase problem in crystallography, J. Opt. Soc. Amer. A, 10 (1993), 1046-1055.
doi: 10.1364/JOSAA.10.001046.
|
[28]
|
W. Huang, K. A. Gallivan and X. Zhang, Solving PhaseLift by low-rank Riemannian optimization methods, Procedia Computer Science, 80 (2016), 1125-1134.
|
[29]
|
M. J. Humphry, B. Kraus, A. C. Hurst, A. M. Maiden and J. M. Rodenburg, Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nature Communications, 3 (2012), 1-7.
doi: 10.1038/ncomms1733.
|
[30]
|
M. Iwen, A. Viswanathan and Y Wang, Robust sparse phase retrieval made easy, Appl. Comput. Harmon. Anal., 42 (2017), 135-142.
doi: 10.1016/j.acha.2015.06.007.
|
[31]
|
K. Jaganathan, Y. C. Eldar and B. Hassibi, Phase retrieval with masks using convex optimization, IEEE International Symposium on Information Theory, (2015), 1655–1659.
|
[32]
|
F. Kramher and Y.-K. Liu, Phase retrieval without small-ball probability assumptions, IEEE Trans. Inform. Theory, 64 (2018), 485-500.
doi: 10.1109/TIT.2017.2757520.
|
[33]
|
R. Kueng, H. Rauhut and U. Terstiege, Low rank matrix recovery from rank one measurements, Appl. Comput. Harmon. Anal., 42 (2014), 88-116.
doi: 10.1016/j.acha.2015.07.007.
|
[34]
|
X. Li and V. Voroninski, Sparse signal recovery from quadratic measurements via convex programming, SIAM J. Math. Anal., 45 (2013), 3019-3033.
doi: 10.1137/120893707.
|
[35]
|
R. Millane, Phase retrieval in crystallography and optics, J. Opt. Soc. Amer. A, 7 (1990), 394-411.
doi: 10.1364/JOSAA.7.000394.
|
[36]
|
M. L. Moravec, J. K. Romberg and R. G. Baraniuk, Compressive phase retrieval, Proceedings of SPIE, 6701 (2007), 6701201-67012011.
doi: 10.1117/12.736360.
|
[37]
|
P. Netrapalli, P. Jain and S. Sanghavi, Phase retrieval using alternating minimization, IEEE Trans. Signal Process, 63 (2015), 4814-4826.
doi: 10.1109/TSP.2015.2448516.
|
[38]
|
H. Ohlsson, A. Yang, R. Dong and S. Sastry, CPRL–An extension of compressive sensing to the phase retrieval problem, IEEE Neural Information Processing Systems, (2012), 1367–1375. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.244.9102&rep=rep1&type=pdf
|
[39]
|
R. Pedarsani, K. Lee and K. Ramchandran, Phasecode: Fast and efficient compressive phase retrieval based on sparse-graph codes, Allerton Conference on Communication, Control and Computing, (2014), 842–849.
doi: 10.1109/ALLERTON.2014.7028542.
|
[40]
|
B. Recht, M. Fazel and P. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471-501.
doi: 10.1137/070697835.
|
[41]
|
Y. Shechtman, A. Beck and Y. C. Eldar, GESPAR: Efficient phase retrieval of sparse signals, IEEE Trans. Signal Process, 62 (2014), 928-938.
doi: 10.1109/TSP.2013.2297687.
|
[42]
|
Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao and M. Segev, Phase retrieval with application to optical imaging: A contemporary overview, IEEE Signal Processing Mag., 32 (2015), 87-109.
doi: 10.1109/MSP.2014.2352673.
|
[43]
|
Y. Shechtman, Y. C. Eldar, A. Szameit and M. Segev, Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing, Optics Express, 19 (2011), 14807-14822.
doi: 10.1364/OE.19.014807.
|
[44]
|
I. Waldspurger, A. d'Aspremont and S. Mallat, Phase recovery, maxcut and complex semidefinite programming, Math. Prog., 149 (2015), 47-81.
doi: 10.1007/s10107-013-0738-9.
|
[45]
|
G. Wang, L. Zhang, G. B. Giannakis, M. Akcakaya and J. Chen, Sparse phase retrieval via truncated amplitude flow, IEEE Trans. Signal Process, 66 (2018), 479-491.
doi: 10.1109/TSP.2017.2771733.
|
[46]
|
G. Zheng, R. Horstmeyer and C. Yang, Wide-field, high-resolution Fourier pty-chographic microscopy, Nature Photonics, 7 (2013), 739-745.
doi: 10.1038/nphoton.2013.187.
|