[1]
|
G. Bao, S. Hou and P. Li, Recent studies on inverse medium scattering problems, Modeling and Computations in Electromagnetics, Lect. Notes Comput. Sci. Eng., Springer, Berlin, 59 (2008), 165-186.
doi: 10.1007/978-3-540-73778-0_6.
|
[2]
|
G. Bao and P. Li, Inverse medium scattering problems for electromagnetic waves, SIAM Journal on Applied Mathematics, 65 (2005), 2049-2066.
doi: 10.1137/040607435.
|
[3]
|
G. Bao and P. J. Li, Shape reconstruction of inverse medium scattering for the Helmholtz equation, Computational Methods for Applied Inverse Problems, Inverse Ill-posed Probl. Ser., Walter de Gruyter, Berlin, 56 (2012), 283-305.
|
[4]
|
G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21 pp.
doi: 10.1088/0266-5611/31/9/093001.
|
[5]
|
T. Bui-Thanh and O. Ghattas, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM/ASA Journal on Uncertainty Quantification, 2 (2014), 203-222.
doi: 10.1137/120894877.
|
[6]
|
T. Bui-Thanh, O. Ghattas, J. Martin and G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems part i: The linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing, 35 (2013), A2494–A2523.
doi: 10.1137/12089586X.
|
[7]
|
T. Bui-Thanh and Q. P. Nguyen, FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems, Inverse Problems and Imaging, 10 (2016), 943-975.
doi: 10.3934/ipi.2016028.
|
[8]
|
M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591-595.
doi: 10.1088/0266-5611/17/4/301.
|
[9]
|
H. Haddar and P. Monk, The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18 (2002), 891-906.
doi: 10.1088/0266-5611/18/3/323.
|
[10]
|
D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory, Inverse Problems, 19 (2003), S105–S137.
doi: 10.1088/0266-5611/19/6/057.
|
[11]
|
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983.
|
[12]
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03537-5.
|
[13]
|
S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White, MCMC methods for functions modifying old algorithms to make them faster, Statistical Science, 28 (2013), 424-446.
doi: 10.1214/13-STS421.
|
[14]
|
T. Cui, K. J. H. Law and Y. M. Marzouk, Dimension-independent likelihood-informed MCMC, Journal of Computational Physics, 304 (2016), 109-137.
doi: 10.1016/j.jcp.2015.10.008.
|
[15]
|
M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of Uncertainty Quantification, Springer, Cham, 1, 2, 3 (2017), 311-428.
|
[16]
|
Z. Deng, X. Yang and J. Huang, A parametric Bayesian level set approach for acoustic source identification using multiple frequency information, preprint, (2019), arXiv: 1907.08660.
|
[17]
|
O. Dorn and D. Lesselier, Level set methods for inverse scattering - some recent developments, Inverse Problems, 25 (2009), 125001, 11 pp.
doi: 10.1088/0266-5611/25/12/125001.
|
[18]
|
O. Dorn, E. L. Miller and C. M. Rappaport, A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Problems, 16 (2000), 1119-1156.
doi: 10.1088/0266-5611/16/5/303.
|
[19]
|
M. M. Dunlop, M. A. Iglesias and A. M. Stuart, Hierarchical Bayesian level set inversion, Statistics and Computing, 27 (2017), 1555-1584.
doi: 10.1007/s11222-016-9704-8.
|
[20]
|
M. M. Dunlop and A. M. Stuart, The Bayesian formulation of EIT: Analysis and algorithms, Inverse Problems and Imaging, 10 (2016), 1007-1036.
doi: 10.3934/ipi.2016030.
|
[21]
|
S. Fadil, A level-set approach for inverse problems involving obstacles, Optimisation and Calculus of Variations, 1 (1996), 17-23.
doi: 10.1051/cocv:1996101.
|
[22]
|
Z. Feng and J. Li, An adaptive independence sampler MCMC algorithm for Bayesian inferences of functions, SIAM Journal on Scientific Computing, 40 (2018), A1301–A1321.
doi: 10.1137/15M1021751.
|
[23]
|
H. Geng, T. Yin and L. Xu, A priori error estimates of the DtN-FEM for the transmission problem in acoustics, Journal of Computational and Applied Mathematics, 313 (2017), 1-17.
doi: 10.1016/j.cam.2016.09.004.
|
[24]
|
F. K. Gruber, E. A. Marengo and A. J. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets, Journal of the Acoustical Society of America, 115 (2004), 3042-3047.
|
[25]
|
T. Hohage, On the numerical solution of a three-dimensional inverse medium scattering problem, Inverse Problems, 17 (2001), 1743-1763.
doi: 10.1088/0266-5611/17/6/314.
|
[26]
|
S. Hou, K. Solna and H. Zhao, A direct imaging algorithm for extended targets, Inverse Problems, 22 (2006), 1151-1178.
doi: 10.1088/0266-5611/22/4/003.
|
[27]
|
G. C. Hsiao, N. Nigam, J. E. Pasciak and L. Xu, Error analysis of the DtN-FEM for the scattering problem in acoustics via Fourier analysis, Journal of Computational and Applied Mathematics, 235 (2011), 4949-4965.
doi: 10.1016/j.cam.2011.04.020.
|
[28]
|
J. Huang, Z. Deng and L. Xu, Bayesian approach for inverse interior scattering problems with limited aperture., Applicable Analysis, in press, (2020).
|
[29]
|
M. A. Iglesias, Y. Lu and A. M. Stuart, A Bayesian level set method for geometric inverse problems, Interfaces and Free Boundaries, 18 (2016), 181-217.
doi: 10.4171/IFB/362.
|
[30]
|
K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems, 17 (2001), 1225-1242.
doi: 10.1088/0266-5611/17/5/301.
|
[31]
|
J. Jia, S. Yue, J. Peng and J. Gao, Infinite-dimensional Bayesian approach for inverse scattering problems of a fractional Helmholtz equation, Journal of Functional Analysis, 275 (2018), 2299-2332.
doi: 10.1016/j.jfa.2018.08.002.
|
[32]
|
L. Jiang and N. Ou, Bayesian inference using intermediate distribution based on coarse multiscale model for time fractional diffusion equations, SIAM Journal on Multiscale Modeling Simulation, 16 (2018), 327-355.
doi: 10.1137/17M1110535.
|
[33]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160. Springer-Verlag, New York, 2005.
|
[34]
|
A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040.
doi: 10.1088/0266-5611/18/4/306.
|
[35]
|
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications, Vol. 36, Oxford University Press, Oxford, 2008.
|
[36]
|
R. Kress, Newtons method for inverse obstacle scattering meets the method of least squares, Inverse Problems, 19 (2003), S91–S104.
doi: 10.1088/0266-5611/19/6/056.
|
[37]
|
R. Kress and W. Rundell, A quasi-Newton method in inverse obstacle scattering, Inverse Problems, 10 (1994), 114-1157.
doi: 10.1088/0266-5611/10/5/011.
|
[38]
|
J. Li, A note on the Karhunen-Loève expansions for infinite-dimensional Bayesian inverse problems, Statistics Probability Letters, 106 (2015), 1-4.
doi: 10.1016/j.spl.2015.06.025.
|
[39]
|
Z. Li, Z. Deng and J. Sun, Extended-sampling-Bayesian method for limited aperture inverse scattering problems, SIAM Journal on Imaging Sciences, 13 (2020), 422-444.
doi: 10.1137/19M1270501.
|
[40]
|
Z. Li, Y. Liu, J. Sun and L. Xu, Quality-Bayesian approach to inverse acoustic source problems with partial data, SIAM Journal on Scientific Computing, 43 (2021), A1062–A1080.
doi: 10.1137/20M132345X.
|
[41]
|
F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society, 73 (2011), 423-498.
doi: 10.1111/j.1467-9868.2011.00777.x.
|
[42]
|
J. Liu, Y. Liu and J. Sun, An inverse medium problem using Stekloff eigenvalues and a Bayesian approach, Inverse Problems, 35 (2019), 094004, 20 pp.
doi: 10.1088/1361-6420/ab1be9.
|
[43]
|
J. Martin, L. C. Wilcox, C. Burstedde and O. Ghattas., A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM Journal on Scientific Computing, 34 (2012), A1460–A1487.
doi: 10.1137/110845598.
|
[44]
|
F. Natterer and F. Wiibbelmg, A propagation-backpropagation method for ultrasound tomography, Inverse Problems, 11 (1995), 1225-1232.
doi: 10.1088/0266-5611/11/6/007.
|
[45]
|
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Lgorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2.
|
[46]
|
N. Petra, J. Martin, G. Stadler and O. Ghattas, A computational framework for infinite-dimensional Bayesian inverse problems, part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing, 36 (2014), A1525–A1555.
doi: 10.1137/130934805.
|
[47]
|
R. Potthast, A new non-iterative singular sources method for the reconstruction of piecewise constant media, Numerische Mathematik, 98 (2004), 703-730.
doi: 10.1007/s00211-004-0524-y.
|
[48]
|
L. Roininen, J. M. J. Huttunen and S. Lasanen, Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Problems and Imaging, 8 (2014), 561-586.
doi: 10.3934/ipi.2014.8.561.
|
[49]
|
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, 19 (2010), 451-559.
doi: 10.1017/S0962492910000061.
|
[50]
|
X.-C. Tai and H. Li, A piecewise constant level set method for elliptic inverse problems, Applied Numerical Mathematics, 57 (2007), 686-696.
doi: 10.1016/j.apnum.2006.07.010.
|
[51]
|
M. Vögler, Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method, Inverse Problems, 19 (2003), 739-753.
doi: 10.1088/0266-5611/19/3/316.
|
[52]
|
X. Yang, Z. Deng and J. Wang, An ensemble Kalman filter approach based on level set parameterization for acoustic source identification using multiple frequency information, Communications in Mathematical Research, 36 (2020), 211-228.
doi: 10.4208/cmr.2020-0011.
|