We study boundary determination for an inverse problem associated to the time-harmonic Maxwell equations and another associated to the isotropic elasticity system. We identify the electromagnetic parameters and the Lamé moduli for these two systems from the corresponding boundary measurements. In a first step we reconstruct Lipschitz magnetic permeability, electric permittivity and conductivity on the surface from the ideal boundary measurements. Then, we study inverse problems for Maxwell equations and the isotropic elasticity system assuming that the data contains measurement errors. For both systems, we provide explicit formulas to reconstruct the parameters on the boundary as well as its rate of convergence formula.
Citation: |
[1] | G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements,, J. Differ. Equations, 84 (1990), 252-272. doi: 10.1016/0022-0396(90)90078-4. |
[2] | K. Astala and L. Päiv$\ddot{\mathrm{r}}$inta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265. |
[3] | R.-M. Brown, Recovering the conductivity at the boundary from the Dirichlet to Neumann map: A pointwise result, Journal of Inverse and III-Posed Problems, 9 (2001), 567-574. doi: 10.1515/jiip.2001.9.6.567. |
[4] | A. García and G. Zhang, Appendix of "Reconstruction from boundary measurements for less regular conductivities", Inverse Problems, 32 (2016), 115015, 22 pp. doi: 10.1088/0266-5611/32/11/115015. |
[5] | R.-M. Brown and M. Salo, Identifiability at the boundary for first-order terms, Applicable Analysis, 85 (2006), 735-749. doi: 10.1080/00036810600603377. |
[6] | A. Buffa, M. Costabel and D. Sheen, On traces for H(curl; $\Omega$) in Lipschitz domains, J. Math. Anal. Appl, 276 (2002), 845-867. doi: 10.1016/S0022-247X(02)00455-9. |
[7] | P. Caro and A. Garcia, The Calderón problem with corrupted data, Inverse Problems, 33 (2017), 085001, 17 pp. doi: 10.1088/1361-6420/aa7425. |
[8] | P. Caro and C. J. Meroño, The observational limit of wave packets with noisy measurements, SIAM Journal on Mathematical Analysis, 52 (2020), 5196-5212. doi: 10.1137/20M1324946. |
[9] | Pedro Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), 28 pp. doi: 10.1017/fmp.2015.9. |
[10] | P. Caro and T. Zhou, Global uniqueness for an IBVP for the time-harmonic Maxwell equations, Anal. PDE, 7 (2014), 375-405. doi: 10.2140/apde.2014.7.375. |
[11] | B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 497-516. doi: 10.1215/00127094-2019591. |
[12] | H. Kekkonen, M. Lassas and S. Siltanen, Corrigendum: Analysis of regularized inversion of data corrupted by white Gaussian noise (2014 inverse problems 30 045009), Inverse Problems, 32 (2016), 099501. |
[13] | M. Ikehata, A regularized extraction formula in the enclosure method, Inverse Problems, 18 (2002), 435-440. doi: 10.1088/0266-5611/18/2/309. |
[14] | O. Y. Imanuvilov and M. Yamamoto, Global uniqueness in inverse boundary value problems for the Navier–Stokes equations and Lamé system in two dimensions, Inverse Problems, 31 (2015), 035004, 46 pp. doi: 10.1088/0266-5611/31/3/035004. |
[15] | M. S. Joshi and S. R. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific Journal of Mathematics, 193 (2000), 107-129. doi: 10.2140/pjm.2000.193.107. |
[16] | H. Kekkonen, M. Lassas and S. Siltanen, Analysis of regularized inversion of data corrupted by white gaussian noise, Inverse Problems, 30 (2014), 045009, 18 pp. doi: 10.1088/0266-5611/30/4/045009. |
[17] | J. L. Mueller, K. Knudsen, M. Lassas and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems Imaging, 3 (2009), 599-624. doi: 10.3934/ipi.2009.3.599. |
[18] | R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Communications on Pure and Applied Mathematics, 37 (1984), 289-298. doi: 10.1002/cpa.3160370302. |
[19] | Y.-H. Lin and G. Nakamura, Boundary determination of the Lamé moduli for the isotropic elasticity system, Inverse Problems, 33 (2017), 125004, 23 pp. doi: 10.1088/1361-6420/aa942d. |
[20] | S. R. McDowall, Boundary determination of material parameters from electromagnetic boundary information, Inverse Problems, 13 (1997), 153-163. doi: 10.1088/0266-5611/13/1/012. |
[21] | A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96. doi: 10.2307/2118653. |
[22] | P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7. |
[23] | P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM Journal on Applied Mathematics, 56 (1996), 1129-1145. doi: 10.1137/S0036139995283948. |
[24] | M. Pichler, An inverse problem for Maxwell equations with Lipschitz parameters, Inverse Problems, 34 (2018), 025006, 21 pp. doi: 10.1088/1361-6420/aaa352. |
[25] | M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Mathematische Annalen, 344 (2009), 161-184. doi: 10.1007/s00208-008-0301-9. |
[26] | J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169. doi: 10.2307/1971291. |
[27] | J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary – continuous dependence, Communications on Pure and Applied Mathematics, 41 (1988), 197-219. doi: 10.1002/cpa.3160410205. |
[28] | K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity, 89 (2007), vi+159 pp. doi: 10.1007/s10659-007-9117-1. |
[29] | L. Tartar, On the characterization of traces of a Sobolev space used for Maxwell equation, in Proceedings of a Meeting Held in Bordeaux, in Honour of Michel Artola, (1997). |