• Previous Article
    An efficient multi-grid method for TV minimization problems
  • IPI Home
  • This Issue
  • Next Article
    3D Electrical Impedance Tomography reconstructions from simulated electrode data using direct inversion $ \mathbf{t}^{\rm{{\textbf{exp}}}} $ and Calderón methods
October  2021, 15(5): 1171-1198. doi: 10.3934/ipi.2021033

Boundary determination of electromagnetic and Lamé parameters with corrupted data

1. 

Basque Center for Applied Mathematics, Bilbao, Spain

2. 

School of Mathematics, University of Minnesota, USA

3. 

Department of Applied Mathematics, National Chiao Tung University, Taiwan

4. 

Department of Mathematics, Northeastern University, USA

* Corresponding author: Ting Zhou

Received  September 2020 Revised  January 2021 Published  October 2021 Early access  May 2021

We study boundary determination for an inverse problem associated to the time-harmonic Maxwell equations and another associated to the isotropic elasticity system. We identify the electromagnetic parameters and the Lamé moduli for these two systems from the corresponding boundary measurements. In a first step we reconstruct Lipschitz magnetic permeability, electric permittivity and conductivity on the surface from the ideal boundary measurements. Then, we study inverse problems for Maxwell equations and the isotropic elasticity system assuming that the data contains measurement errors. For both systems, we provide explicit formulas to reconstruct the parameters on the boundary as well as its rate of convergence formula.

Citation: Pedro Caro, Ru-Yu Lai, Yi-Hsuan Lin, Ting Zhou. Boundary determination of electromagnetic and Lamé parameters with corrupted data. Inverse Problems and Imaging, 2021, 15 (5) : 1171-1198. doi: 10.3934/ipi.2021033
References:
[1]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements,, J. Differ. Equations, 84 (1990), 252-272.  doi: 10.1016/0022-0396(90)90078-4.

[2]

K. Astala and L. Päiv$\ddot{\mathrm{r}}$inta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299.  doi: 10.4007/annals.2006.163.265.

[3]

R.-M. Brown, Recovering the conductivity at the boundary from the Dirichlet to Neumann map: A pointwise result, Journal of Inverse and III-Posed Problems, 9 (2001), 567-574.  doi: 10.1515/jiip.2001.9.6.567.

[4]

A. García and G. Zhang, Appendix of "Reconstruction from boundary measurements for less regular conductivities", Inverse Problems, 32 (2016), 115015, 22 pp. doi: 10.1088/0266-5611/32/11/115015.

[5]

R.-M. Brown and M. Salo, Identifiability at the boundary for first-order terms, Applicable Analysis, 85 (2006), 735-749.  doi: 10.1080/00036810600603377.

[6]

A. BuffaM. Costabel and D. Sheen, On traces for H(curl; $\Omega$) in Lipschitz domains, J. Math. Anal. Appl, 276 (2002), 845-867.  doi: 10.1016/S0022-247X(02)00455-9.

[7]

P. Caro and A. Garcia, The Calderón problem with corrupted data, Inverse Problems, 33 (2017), 085001, 17 pp. doi: 10.1088/1361-6420/aa7425.

[8]

P. Caro and C. J. Meroño, The observational limit of wave packets with noisy measurements, SIAM Journal on Mathematical Analysis, 52 (2020), 5196-5212.  doi: 10.1137/20M1324946.

[9]

Pedro Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), 28 pp. doi: 10.1017/fmp.2015.9.

[10]

P. Caro and T. Zhou, Global uniqueness for an IBVP for the time-harmonic Maxwell equations, Anal. PDE, 7 (2014), 375-405.  doi: 10.2140/apde.2014.7.375.

[11]

B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 497-516.  doi: 10.1215/00127094-2019591.

[12]

H. Kekkonen, M. Lassas and S. Siltanen, Corrigendum: Analysis of regularized inversion of data corrupted by white Gaussian noise (2014 inverse problems 30 045009), Inverse Problems, 32 (2016), 099501.

[13]

M. Ikehata, A regularized extraction formula in the enclosure method, Inverse Problems, 18 (2002), 435-440.  doi: 10.1088/0266-5611/18/2/309.

[14]

O. Y. Imanuvilov and M. Yamamoto, Global uniqueness in inverse boundary value problems for the Navier–Stokes equations and Lamé system in two dimensions, Inverse Problems, 31 (2015), 035004, 46 pp. doi: 10.1088/0266-5611/31/3/035004.

[15]

M. S. Joshi and S. R. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific Journal of Mathematics, 193 (2000), 107-129.  doi: 10.2140/pjm.2000.193.107.

[16]

H. Kekkonen, M. Lassas and S. Siltanen, Analysis of regularized inversion of data corrupted by white gaussian noise, Inverse Problems, 30 (2014), 045009, 18 pp. doi: 10.1088/0266-5611/30/4/045009.

[17]

J. L. MuellerK. KnudsenM. Lassas and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems Imaging, 3 (2009), 599-624.  doi: 10.3934/ipi.2009.3.599.

[18]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Communications on Pure and Applied Mathematics, 37 (1984), 289-298.  doi: 10.1002/cpa.3160370302.

[19]

Y.-H. Lin and G. Nakamura, Boundary determination of the Lamé moduli for the isotropic elasticity system, Inverse Problems, 33 (2017), 125004, 23 pp. doi: 10.1088/1361-6420/aa942d.

[20]

S. R. McDowall, Boundary determination of material parameters from electromagnetic boundary information, Inverse Problems, 13 (1997), 153-163.  doi: 10.1088/0266-5611/13/1/012.

[21]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96.  doi: 10.2307/2118653.

[22]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.  doi: 10.1215/S0012-7094-93-07014-7.

[23]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM Journal on Applied Mathematics, 56 (1996), 1129-1145.  doi: 10.1137/S0036139995283948.

[24]

M. Pichler, An inverse problem for Maxwell equations with Lipschitz parameters, Inverse Problems, 34 (2018), 025006, 21 pp. doi: 10.1088/1361-6420/aaa352.

[25]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Mathematische Annalen, 344 (2009), 161-184.  doi: 10.1007/s00208-008-0301-9.

[26]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169.  doi: 10.2307/1971291.

[27]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary – continuous dependence, Communications on Pure and Applied Mathematics, 41 (1988), 197-219.  doi: 10.1002/cpa.3160410205.

[28]

K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity, 89 (2007), vi+159 pp. doi: 10.1007/s10659-007-9117-1.

[29]

L. Tartar, On the characterization of traces of a Sobolev space used for Maxwell equation, in Proceedings of a Meeting Held in Bordeaux, in Honour of Michel Artola, (1997).

show all references

References:
[1]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements,, J. Differ. Equations, 84 (1990), 252-272.  doi: 10.1016/0022-0396(90)90078-4.

[2]

K. Astala and L. Päiv$\ddot{\mathrm{r}}$inta, Calderón's inverse conductivity problem in the plane, Annals of Mathematics, 163 (2006), 265-299.  doi: 10.4007/annals.2006.163.265.

[3]

R.-M. Brown, Recovering the conductivity at the boundary from the Dirichlet to Neumann map: A pointwise result, Journal of Inverse and III-Posed Problems, 9 (2001), 567-574.  doi: 10.1515/jiip.2001.9.6.567.

[4]

A. García and G. Zhang, Appendix of "Reconstruction from boundary measurements for less regular conductivities", Inverse Problems, 32 (2016), 115015, 22 pp. doi: 10.1088/0266-5611/32/11/115015.

[5]

R.-M. Brown and M. Salo, Identifiability at the boundary for first-order terms, Applicable Analysis, 85 (2006), 735-749.  doi: 10.1080/00036810600603377.

[6]

A. BuffaM. Costabel and D. Sheen, On traces for H(curl; $\Omega$) in Lipschitz domains, J. Math. Anal. Appl, 276 (2002), 845-867.  doi: 10.1016/S0022-247X(02)00455-9.

[7]

P. Caro and A. Garcia, The Calderón problem with corrupted data, Inverse Problems, 33 (2017), 085001, 17 pp. doi: 10.1088/1361-6420/aa7425.

[8]

P. Caro and C. J. Meroño, The observational limit of wave packets with noisy measurements, SIAM Journal on Mathematical Analysis, 52 (2020), 5196-5212.  doi: 10.1137/20M1324946.

[9]

Pedro Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum of Mathematics, Pi, 4 (2016), 28 pp. doi: 10.1017/fmp.2015.9.

[10]

P. Caro and T. Zhou, Global uniqueness for an IBVP for the time-harmonic Maxwell equations, Anal. PDE, 7 (2014), 375-405.  doi: 10.2140/apde.2014.7.375.

[11]

B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 497-516.  doi: 10.1215/00127094-2019591.

[12]

H. Kekkonen, M. Lassas and S. Siltanen, Corrigendum: Analysis of regularized inversion of data corrupted by white Gaussian noise (2014 inverse problems 30 045009), Inverse Problems, 32 (2016), 099501.

[13]

M. Ikehata, A regularized extraction formula in the enclosure method, Inverse Problems, 18 (2002), 435-440.  doi: 10.1088/0266-5611/18/2/309.

[14]

O. Y. Imanuvilov and M. Yamamoto, Global uniqueness in inverse boundary value problems for the Navier–Stokes equations and Lamé system in two dimensions, Inverse Problems, 31 (2015), 035004, 46 pp. doi: 10.1088/0266-5611/31/3/035004.

[15]

M. S. Joshi and S. R. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific Journal of Mathematics, 193 (2000), 107-129.  doi: 10.2140/pjm.2000.193.107.

[16]

H. Kekkonen, M. Lassas and S. Siltanen, Analysis of regularized inversion of data corrupted by white gaussian noise, Inverse Problems, 30 (2014), 045009, 18 pp. doi: 10.1088/0266-5611/30/4/045009.

[17]

J. L. MuellerK. KnudsenM. Lassas and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems Imaging, 3 (2009), 599-624.  doi: 10.3934/ipi.2009.3.599.

[18]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Communications on Pure and Applied Mathematics, 37 (1984), 289-298.  doi: 10.1002/cpa.3160370302.

[19]

Y.-H. Lin and G. Nakamura, Boundary determination of the Lamé moduli for the isotropic elasticity system, Inverse Problems, 33 (2017), 125004, 23 pp. doi: 10.1088/1361-6420/aa942d.

[20]

S. R. McDowall, Boundary determination of material parameters from electromagnetic boundary information, Inverse Problems, 13 (1997), 153-163.  doi: 10.1088/0266-5611/13/1/012.

[21]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Mathematics, 143 (1996), 71-96.  doi: 10.2307/2118653.

[22]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.  doi: 10.1215/S0012-7094-93-07014-7.

[23]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM Journal on Applied Mathematics, 56 (1996), 1129-1145.  doi: 10.1137/S0036139995283948.

[24]

M. Pichler, An inverse problem for Maxwell equations with Lipschitz parameters, Inverse Problems, 34 (2018), 025006, 21 pp. doi: 10.1088/1361-6420/aaa352.

[25]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators, Mathematische Annalen, 344 (2009), 161-184.  doi: 10.1007/s00208-008-0301-9.

[26]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169.  doi: 10.2307/1971291.

[27]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary – continuous dependence, Communications on Pure and Applied Mathematics, 41 (1988), 197-219.  doi: 10.1002/cpa.3160410205.

[28]

K. Tanuma, Stroh formalism and Rayleigh waves, J. Elasticity, 89 (2007), vi+159 pp. doi: 10.1007/s10659-007-9117-1.

[29]

L. Tartar, On the characterization of traces of a Sobolev space used for Maxwell equation, in Proceedings of a Meeting Held in Bordeaux, in Honour of Michel Artola, (1997).

[1]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[2]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[3]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[4]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems and Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[5]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations and Control Theory, 2022, 11 (1) : 325-346. doi: 10.3934/eect.2021018

[6]

Elena Beretta, Elisa Francini, Sergio Vessella. Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements. Inverse Problems and Imaging, 2014, 8 (3) : 611-644. doi: 10.3934/ipi.2014.8.611

[7]

R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022006

[8]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems and Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[9]

Bastian Harrach. Simultaneous determination of the diffusion and absorption coefficient from boundary data. Inverse Problems and Imaging, 2012, 6 (4) : 663-679. doi: 10.3934/ipi.2012.6.663

[10]

Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036

[11]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[12]

Colin J. Cotter, Darryl D. Holm. Geodesic boundary value problems with symmetry. Journal of Geometric Mechanics, 2010, 2 (1) : 51-68. doi: 10.3934/jgm.2010.2.51

[13]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[14]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[15]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

[16]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[17]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems and Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[18]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[19]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[20]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (141)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]