[1]
|
R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.
doi: 10.1088/0266-5611/10/6/003.
|
[2]
|
S. T. Acton, Multigrid anisotropic diffusion, IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 7 (1998), 280-291.
|
[3]
|
X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2 (2008), 455-484.
doi: 10.3934/ipi.2008.2.455.
|
[4]
|
C. Brito-Loeza and K. Chen, On high-order denoising models and fast algorithms for vector-valued images, IEEE Trans. Image Process., 19 (2010), 1518-1527.
doi: 10.1109/TIP.2010.2042655.
|
[5]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
|
[6]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[7]
|
A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25 (2016), 161-319.
doi: 10.1017/S096249291600009X.
|
[8]
|
A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program., 159 (2016), 253-287.
doi: 10.1007/s10107-015-0957-3.
|
[9]
|
R. H. Chan and K. Chen, A multilevel algorithm for simultaneously denoising and deblurring images, SIAM J. Sci. Comput., 32 (2010), 1043-1063.
doi: 10.1137/080741410.
|
[10]
|
T. F. Chan and K. Chen, On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation, Numer. Algorithms, 41 (2006), 387-411.
doi: 10.1007/s11075-006-9020-z.
|
[11]
|
T. F. Chan and K. Chen, An optimization based multilevel algorithm for total variation image denoising, Multiscale Model. Simul., 5 (2006), 615-645.
doi: 10.1137/050644999.
|
[12]
|
T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62 (2002), 1019-1043.
doi: 10.1137/S0036139900368844.
|
[13]
|
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266–277.
doi: 10.1109/83.902291.
|
[14]
|
H. Chang, X.-C. Tai, L.-L. Wang and D. Yang, Convergence rate of overlapping domain decomposition methods for the Rudin-Osher-Fatemi model based on a dual formulation, SIAM J. Imaging Sci., 8 (2015), 564-591.
doi: 10.1137/140965016.
|
[15]
|
R. Chen, J. Huang and X.-C. Cai, A parallel domain decomposition algorithm for large scale image denoising, Inverse Probl. Imaging, 13 (2019), 1259-1282.
doi: 10.3934/ipi.2019055.
|
[16]
|
K. Chen and J. Savage, An accelerated algebraic multigrid algorithm for total-variation denoising, BIT, 47 (2007), 277-296.
doi: 10.1007/s10543-007-0123-2.
|
[17]
|
K. Chen and X.-C. Tai, A nonlinear multigrid method for total variation minimization from image restoration, J. Sci. Comput., 33 (2007), 115-138.
doi: 10.1007/s10915-007-9145-9.
|
[18]
|
Y. Duan, H. Chang and X.-C. Tai, Convergent non-overlapping domain decomposition methods for variational image segmentation, J. Sci. Comput., 69 (2016), 532-555.
doi: 10.1007/s10915-016-0207-8.
|
[19]
|
E. Esser, X. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[20]
|
D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM J. Sci. Comput., 31 (2009), 3712-3743.
doi: 10.1137/070706318.
|
[21]
|
T. Goldstein and S. Osher, The split Bregman method for ${L}_1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[22]
|
Y. Gu, L.-L. Wang and X.-C. Tai, A direct approach toward global minimization for multiphase labeling and segmentation problems, IEEE Trans. Image Process., 21 (2012), 2399-2411.
doi: 10.1109/TIP.2011.2182522.
|
[23]
|
M. Hintermüller and A. Langer, Non-overlapping domain decomposition methods for dual total variation based image denoising, J. Sci. Comput., 62 (2015), 456-481.
doi: 10.1007/s10915-014-9863-8.
|
[24]
|
A. Langer and F. Gaspoz, Overlapping domain decomposition methods for total variation denoising, SIAM J. Numer. Anal., 57 (2019), 1411-1444.
doi: 10.1137/18M1173782.
|
[25]
|
C.-O. Lee and C. Nam, Primal domain decomposition methods for the total variation minimization, based on dual decomposition, SIAM J. Sci. Comput., 39 (2017), B403–B423.
doi: 10.1137/15M1049919.
|
[26]
|
C.-O. Lee, C. Nam and J. Park, Domain decomposition methods using dual conversion for the total variation minimization with $L^1$ fidelity term, J. Sci. Comput., 78 (2019), 951-970.
doi: 10.1007/s10915-018-0791-x.
|
[27]
|
T. Lu, P. Neittaanmäki and X.-C. Tai, A parallel splitting up method and its application to Navier-Stokes equations, Appl. Math. Lett., 4 (1991), 25-29.
doi: 10.1016/0893-9659(91)90161-N.
|
[28]
|
A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22 (2000), 387-405.
doi: 10.1137/S1064827599351751.
|
[29]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[30]
|
J. Savage and K. Chen, An improved and accelerated non-linear multigrid method for total-variation denoising, Int. J. Comput. Math., 82 (2005), 1001-1015.
doi: 10.1080/00207160500069904.
|
[31]
|
E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065-3091.
doi: 10.1088/0031-9155/57/10/3065.
|
[32]
|
E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777.
doi: 10.1088/0031-9155/53/17/021.
|
[33]
|
X.-C. Tai and Y. Duan, Domain decomposition methods with graph cuts algorithms for image segmentation., Int. J. Numer. Anal. Model., 8 (2011), 137-155.
|
[34]
|
X.-C. Tai and J. Xu, Global and uniform convergence of subspace correction methods for some convex optimization problems, Math. Comp., 71 (2002), 105-124.
doi: 10.1090/S0025-5718-01-01311-4.
|
[35]
|
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238.
doi: 10.1137/0917016.
|
[36]
|
C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7 (1998), 813-824.
doi: 10.1109/83.679423.
|
[37]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[38]
|
C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[39]
|
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), 581-613.
doi: 10.1137/1034116.
|
[40]
|
J. Xu, H. B. Chang and J. Qin, Domain decomposition method for image deblurring, J. Comput. Appl. Math., 271 (2014), 401-414.
doi: 10.1016/j.cam.2014.03.030.
|
[41]
|
J. Xu, X.-C. Tai and L.-L. Wang, A two-level domain decomposition method for image restoration, Inverse Probl. Imaging, 4 (2010), 523-545.
doi: 10.3934/ipi.2010.4.523.
|