\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An efficient multi-grid method for TV minimization problems

The work of the first three authors were supported by NSFC 11701418 and 12071345, Major Science and Technology Project of Tianjin 18ZXRHSY00160 and Recruitment Program of Global Young Expert. The work of Yin was supported by NSFC 11801200 and a startup grant from HUST. The work of the last author was supported by Hong Kong Baptist University startup grants RG(R)-RC/17-18/02-MATH and FRG2/17-18/033

Abstract / Introduction Full Text(HTML) Figure(9) / Table(6) Related Papers Cited by
  • We propose an efficient multi-grid domain decomposition method for solving the total variation (TV) minimization problems. Our multi-grid scheme is developed based on the piecewise constant function spanned subspace correction rather than the piecewise linear one in [17], which ensures the calculation of the TV term only occurs on the boundaries of the support sets. Besides, the domain decomposition method is implemented on each layer to enable parallel computation. Comprehensive comparison results are presented to demonstrate the improvement in CPU time and image quality of the proposed method on medium and large-scale image denoising and reconstruction problems.

    Mathematics Subject Classification: Primary: 65K10, 68U10; Secondary: 68K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An illustration of the piecewise linear basic function and piecewise constant basic function $ \phi_j^i $ on $ \bar{\tau}_j^i $ of the layer $ j = 4 $. In (a), the $ \square $ defines the weight of $ 1 $ for the piecewise constant function and $ \lozenge $ defines the weight of $ 0 $ for the outer boundary $ \partial\bar\tau_j^i $. In (b), the weights of $ \circ $, $ \ast $, $ \triangledown $ and $ \triangle $ are $ 1/8 $, $ 3/8 $, $ 5/8 $, $ 7/8 $ respectively

    Figure 2.  An illustration of $ \partial\bar{\tau}_j^{i,l} $, $ \partial\bar{\tau}_j^{i,t} $, $ \partial\tau_j^{i,b} $ and $ \partial\tau_j^{i,r} $ located on $ \bar{\tau}_j^i $ of the layer $ j = 4 $

    Figure 3.  Illustration of the 4-color domain decomposition for a domain of size $ 8\times 8 $, where each color has one element on the coarse layer $ j = 3 $

    Figure 4.  The test images with sizes and their identifiers

    Figure 5.  Denoised results and the residual images obtained by different methods on image 'Baboon' ($ \#6 $) of the noise level $ \sigma = 20 $ and $ \alpha = 15 $, and image 'Building' ($ \#8 $) of noise level $ \sigma = 40 $ and $ \alpha = 35 $

    Figure 6.  The decay of relative error and numerical energy for Baboon image ($ \#6 $) of noise level $ \sigma = 20 $ with $ \alpha = 15 $ and Building image ($ \#8 $) of noise level $ \sigma = 40 $ with $ \alpha = 35 $. From left to right on the first row is the relative error and numerical energy of Baboon image ($ \#6 $) while on the second row are relative error and numerical energy of Building image ($ \#8 $)

    Figure 7.  Image deburring results obtained by our MMC and PD method on 'Boat' and 'Lena' with motion blur

    Figure 8.  Both CT reconstruction results (Row one) and residual images (Row two) obtained by MMC and PD method for 'Forbil-gen' phantom with $ N_p = 36 $ and $ 72 $

    Figure 9.  MRI reconstruction results (Row one) and residual images (Row two) obtained by our MMC and PD method on the brain image with radial sampling patterns and sampling lines $ N_s = 30 $ and $ 50 $

    Table 1.  The results on selected images ($ \#1 $, $ \#3 $, $ \#5 $ and $ \#7 $) with different $ J $ for noise level $ \sigma = 20 $

    $ \alpha $ 10 15 20
    MML $ J $ Iter Energy CPU(s) Iter Energy CPU(s) Iter Energy CPU(s)
    #1 1 54 2.32E7 1.10 86 3.12E7 2.05 128 3.80E7 3.12
    2 23 2.31E7 1.21 50 3.05E7 2.54 80 3.62E7 3.49
    3 24 2.29E7 1.48 40 3.03E7 2.46 31 3.53E7 3.67
    4 22 2.29E7 1.53 32 3.03E7 3.35 29 3.52E7 3.21
    5 24 2.29E7 1.85 32 3.03E7 4.88 29 3.52E7 4.51
    6 22 2.29E7 2.08 23 3.03E7 5.73 29 3.52E7 5.71
    #3 1 35 8.60E7 5.64 82 1.14E8 11.32 139 1.38E8 19.35
    2 18 8.57E7 5.87 36 1.11E8 10.32 65 1.29E8 16.43
    3 18 8.56E7 6.18 44 1.07E8 10.65 32 1.25E8 14.47
    4 18 8.56E7 6.79 31 1.07E8 9.31 32 1.24E8 11.28
    5 18 8.56E7 6.77 31 1.07E8 9.78 32 1.24E8 12.02
    6 18 8.56E7 7.25 31 1.07E8 10.17 32 1.24E8 12.56
    #5 1 49 3.54E8 27.32 71 4.72E8 42.35 198 5.63E8 79.56
    2 31 3.54E8 31.47 53 4.60E8 50.61 70 5.34E8 71.35
    3 28 3.53E8 32.06 43 4.59E8 49.35 54 5.24E8 60.21
    4 21 3.53E8 33.37 36 4.59E8 48.35 52 5.22E8 52.13
    5 21 3.53E8 34.25 36 4.59E8 50.22 52 5.22E8 66.32
    6 21 3.53E8 38.24 36 4.59E8 51.78 52 5.22E8 75.21
    #7 1 57 1.38E9 121.32 120 1.82E9 237.21 189 2.21E9 369.75
    2 31 1.38E9 117.24 61 1.76E9 225.76 102 2.05E9 366.14
    3 26 1.37E9 115.78 44 1.76E9 193.35 65 1.99E9 299.78
    4 26 1.37E9 122.73 39 1.75E9 192.49 56 1.94E9 280.32
    5 26 1.37E9 126.25 39 1.75E9 208.15 53 1.94E9 288.25
    6 26 1.37E9 139.35 39 1.75E9 229.29 53 1.94E9 282.12
    MMC $ J $ Iter Energy CPU(s) Iter Energy CPU(s) Iter Energy CPU(s)
    #1 1 33 2.31E7 0.85 72 3.12E7 1.72 112 3.79E7 2.77
    2 21 2.31E7 0.69 41 3.05E7 1.22 37 3.63E7 1.21
    3 23 2.31E7 0.83 33 3.03E7 1.15 46 3.56E7 1.54
    4 21 2.31E7 0.88 33 3.03E7 1.21 34 3.54E7 1.20
    5 21 2.31E7 0.83 29 3.03E7 1.31 33 3.54E7 1.28
    6 20 2.31E7 0.82 23 3.03E7 1.95 33 3.54E7 1.55
    #3 1 39 8.59E7 4.96 80 1.14E8 9.65 134 1.39E8 15.84
    2 28 8.58E7 4.07 36 1.11E8 5.13 54 1.31E8 7.54
    3 27 8.58E7 4.25 42 1.07E8 6.41 46 1.26E8 6.99
    4 27 8.58E7 4.27 37 1.07E8 5.97 34 1.24E8 5.75
    5 27 8.58E7 4.73 33 1.07E8 5.68 38 1.24E8 6.56
    6 26 8.58E7 4.56 30 1.07E8 5.93 32 1.24E8 6.73
    #5 1 51 3.54E8 23.32 99 4.71E8 44.23 161 5.64E8 74.36
    2 33 3.54E8 20.67 49 4.60E8 29.95 66 5.37E8 42.74
    3 31 3.53E8 23.07 46 4.59E8 31.26 47 5.26E8 34.33
    4 30 3.53E8 22.07 40 4.59E8 28.98 48 5.23E8 34.28
    5 28 3.53E8 25.88 42 4.59E8 31.20 43 5.23E8 37.25
    6 29 3.53E8 30.15 39 4.59E8 36.59 44 5.23E8 42.67
    #7 1 57 1.38E9 121.96 120 1.82E9 237.88 189 2.21E9 369.02
    2 36 1.38E9 100.06 56 1.76E9 124.64 84 2.05E9 183.47
    3 34 1.38E9 86.18 44 1.75E9 110.30 62 1.99E9 150.35
    4 34 1.36E9 81.35 43 1.74E9 105.42 43 1.95E9 114.78
    5 37 1.36E9 90.06 43 1.74E9 109.73 39 1.95E9 117.75
    6 36 1.36E9 98.81 43 1.74E9 115.06 40 1.95E9 123.42
     | Show Table
    DownLoad: CSV

    Table 2.  The denoising results by MMC and MML methods for Rudin-Osher-Fatemi model with $ \alpha = 10,\ 15,\ 20 $ for noise level $ \sigma = 20 $.

    $ \alpha=10 $ $ \alpha=15 $ $ \alpha=20 $
    MMC MML Dual P-D MMC MML Dual P-D MMC MML Dual P-D
    PSNR #1 28.77 28.77 28.71 28.70 29.26 29.27 29.23 29.27 29.14 29.14 29.13 29.17
    #2 28.43 28.42 28.40 28.41 28.64 28.64 28.60 28.62 27.61 27.59 27.55 27.58
    #3 29.73 29.73 29.70 29.73 30.79 30.77 30.72 30.75 30.60 30.63 30.58 30.60
    #4 29.84 29.86 29.83 29.83 31.14 31.13 31.09 31.11 30.28 30.32 30.28 30.30
    #5 29.18 29.16 29.15 29.15 29.64 29.64 29.63 29.63 29.35 29.34 29.30 29.33
    #6 27.81 27.82 27.80 27.79 27.95 27.95 27.89 27.94 26.58 26.58 26.55 26.55
    #7 30.70 30.65 30.60 30.68 32.45 32.44 32.43 32.40 32.33 32.33 32.26 32.38
    #8 30.43 30.40 30.39 30.41 32.28 32.25 32.23 32.27 31.27 31.26 31.20 31.25
    SSIM #1 0.7786 0.7771 0.7735 0.7757 0.8511 0.8521 0.8515 0.8523 0.8492 0.8499 0.8491 0.8501
    #2 0.7473 0.7451 0.7376 0.7391 0.8303 0.8279 0.8299 0.8255 0.8243 0.8216 0.8255 0.8299
    #3 0.7342 0.7277 0.7225 0.7245 0.8256 0.8221 0.8242 0.8253 0.8195 0.8207 0.8217 0.8228
    #4 0.7544 0.7431 0.7419 0.7433 0.8548 0.8562 0.854 0.8537 0.8518 0.8548 0.8520 0.8521
    #5 0.7287 0.7298 0.7267 0.7294 0.7649 0.7631 0.7622 0.7641 0.7381 0.7394 0.7388 0.7395
    #6 0.7953 0.7909 0.7943 0.7952 0.8031 0.8131 0.8124 0.8122 0.7883 0.7894 0.7788 0.7793
    #7 0.7447 0.7412 0.7368 0.7342 0.8865 0.8877 0.8788 0.8791 0.8725 0.8717 0.8736 0.8744
    #8 0.7386 0.7252 0.7237 0.7241 0.9203 0.9107 0.9154 0.9165 0.9154 0.9199 0.9198 0.9192
    CPU(s) #1 0.88 1.53 2.41 1.40 1.21 3.35 4.49 2.15 1.20 3.61 7.61 2.71
    #2 1.00 1.64 1.56 1.72 1.17 2.01 2.81 1.97 1.18 3.11 9.01 2.21
    #3 4.27 6.94 8.26 5.62 5.97 9.83 14.42 8.60 5.81 11.28 20.67 13.94
    #4 4.22 6.81 8.56 6.13 5.13 9.13 15.01 8.11 5.22 12.10 21.35 11.65
    #5 22.68 33.19 30.12 19.73 28.68 48.35 54.08 29.93 34.28 52.13 63.59 41.57
    #6 18.33 23.19 31.01 20.21 26.78 50.14 51.35 28.86 28.48 56.13 66.01 39.73
    #7 88.80 122.73 184.93 113.37 106.43 192.49 463.12 161.99 115.83 280.32 560.32 188.35
    #8 116.35 133.84 190.21 121.61 123.28 183.17 454.35 159.73 134.78 244.35 555.38 198.46
    Energy #1 2.31E7 2.29E7 2.31E7 2.31E7 3.03E7 3.01E7 3.03E7 3.03E7 3.52E7 3.52E7 3.53E7 3.53E7
    #2 2.44E7 2.43E7 2.43E7 2.43E7 3.23E7 3.21E7 3.23E7 3.23E7 3.70E7 3.71E7 3.71E7 3.70E7
    #3 1.28E8 1.29E8 1.29E8 1.28E8 2.77E8 2.78E8 2.78E8 2.78E8 4.66E8 4.67E8 4.67E8 4.67E8
    #4 8.39E7 8.37E7 8.39E7 8.39E7 1.08E8 1.09E8 1.09E8 1.09E8 1.22E8 1.23E8 1.22E8 1.23E8
    #5 3.53E8 3.51E8 3.53E8 3.53E8 4.59E8 4.57E8 4.57E8 4.57E8 5.23E8 5.21E8 5.22E8 5.22E8
    #6 3.71E8 3.72E8 3.72E8 3.72E8 4.71E8 4.72E8 4.71E8 4.71E8 5.97E8 5.97E8 5.98E8 5.98E8
    #7 1.37E9 1.36E9 1.37E9 1.36E9 1.75E9 1.75E9 1.75E9 1.75E9 1.95E9 1.94E9 1.95E9 1.95E9
    #8 1.40E9 1.42E9 1.40E9 1.41E9 1.81E9 1.80E9 1.81E9 1.80E9 1.97E9 1.98E9 1.98E9 1.97E9
     | Show Table
    DownLoad: CSV

    Table 3.  The denoising results for Rudin-Osher-Fatemi model with different noise levels $ \sigma = 20,\ 30,\ 40 $.

    $ \alpha=15,\ \sigma=20 $ $ \alpha=25,\ \sigma=30 $ $ \alpha=35,\ \sigma=40 $
    MMC MML Dual P-D MMC MML Dual P-D MMC MML Dual P-D
    PSNR #1 29.26 29.27 29.23 29.27 26.73 26.73 26.73 26.73 25.04 25.04 25.04 25.04
    #2 28.64 28.64 28.60 28.62 26.49 26.44 26.40 26.42 25.01 24.95 24.96 24.96
    #3 30.79 30.77 30.72 30.75 28.78 28.78 28.78 28.78 27.25 27.21 27.21 27.21
    #4 31.14 31.13 31.09 31.11 29.13 29.11 29.11 29.12 27.21 27.21 27.21 27.21
    #5 29.64 29.64 29.63 29.63 28.73 27.75 27.75 27.74 26.40 26.38 26.39 26.40
    #6 27.95 27.95 27.89 27.94 25.44 25.45 25.42 24.13 23.93 23.94 23.92 23.94
    #7 32.45 32.44 32.43 32.40 29.92 29.91 29.90 29.91 28.20 28.20 28.20 28.20
    #8 32.28 32.25 32.23 32.27 29.95 29.93 29.85 29.87 27.52 27.52 27.51 27.51
    SSIM #1 0.8511 0.8521 0.8515 0.8523 0.8051 0.8048 0.8046 0.8084 0.7561 0.7563 0.7601 0.7623
    #2 0.8303 0.8279 0.8299 0.8255 0.7782 0.7755 0.7749 0.7811 0.7499 0.7476 0.7377 0.7492
    #3 0.8256 0.8221 0.8242 0.8253 0.7842 0.7827 0.7841 0.7851 0.7555 0.7519 0.7549 0.7537
    #4 0.8548 0.8562 0.8542 0.8537 0.8046 0.8011 0.8044 0.8012 0.7717 0.7782 0.7739 0.7717
    #5 0.7649 0.7631 0.7622 0.7641 0.7162 0.7144 0.7088 0.7101 0.6772 0.6766 0.6688 0.6768
    #6 0.8031 0.8131 0.8124 0.8122 0.7311 0.7353 0.7344 0.7349 0.6601 0.6721 0.6687 0.6699
    #7 0.8865 0.8877 0.8788 0.8791 0.8478 0.8516 0.8496 0.8502 0.8224 0.8236 0.8235 0.8247
    #8 0.9203 0.9107 0.9154 0.9165 0.9002 0.8997 0.8981 0.8994 0.8811 0.8868 0.8714 0.8726
    CPU(s) #1 1.21 3.35 4.49 2.15 1.62 3.88 4.35 3.99 2.55 5.95 5.69 5.81
    #2 1.17 2.01 2.81 1.97 1.79 3.61 7.13 4.23 3.05 11.78 7.13 8.68
    #3 5.97 9.83 14.42 8.60 6.93 16.06 17.14 11.86 9.88 37.98 17.19 15.06
    #4 5.13 9.13 15.01 8.11 7.68 15.76 19.06 8.99 9.85 20.74 18.99 15.04
    #5 28.68 48.35 54.08 29.93 35.66 76.67 64.43 49.30 48.53 190.87 78.30 56.35
    #6 26.78 50.14 51.35 28.86 38.63 79.12 78.84 58.84 50.25 180.62 64.30 55.44
    #7 106.43 192.49 463.12 161.99 161.37 334.45 452.12 188.14 186.92 491.83 443.35 269.35
    #8 123.28 183.17 454.35 159.73 164.28 303.28 443.18 191.18 208.15 482.78 482.06 275.05
    Energy #1 3.03E7 3.01E7 3.03E7 3.03E7 6.56E7 6.57E7 6.57E7 6.56E7 1.18E8 1.17E8 1.18E8 1.17E8
    #2 3.23E7 3.21E7 3.23E7 3.23E7 6.84E7 6.85E7 6.85E7 6.84E7 1.15E8 1.16E8 1.16E8 1.15E8
    #3 2.77E8 2.78E8 2.78E8 2.78E8 2.87E8 2.87E8 2.86E8 2.86E8 4.35E8 4.36E8 4.36E8 4.35E8
    #4 1.08E8 1.09E8 1.09E8 1.09E8 2.42E8 2.43E8 2.43E8 2.43E8 4.30E8 4.29E8 4.31E8 4.31E8
    #5 4.59E8 4.57E8 4.57E8 4.57E8 1.01E9 1.02E9 1.02E9 1.01E9 1.77E9 1.78E9 1.78E9 1.77E9
    #6 4.72E8 4.71E8 4.71E8 4.71E8 1.08E9 1.09E9 1.09E9 1.08E9 1.87E9 1.88E9 1.88E9 1.87E9
    #7 1.75E9 1.75E9 1.75E9 1.75E9 3.94E9 3.93E9 3.93E9 3.93E9 6.95E9 6.94E9 6.95E9 6.94E9
    #8 1.81E9 1.80E9 1.81E9 1.80E9 3.98E9 3.99E9 3.99E9 3.99E9 7.31E9 7.32E9 7.31E9 7.31E9
     | Show Table
    DownLoad: CSV

    Table 4.  PSNR, SSIM values and CPUs for deblurring with different kernel

    Image Gaussian Blur Motion Blur
    CPU PSNR SSIM Energy CPU PSNR SSIM Energy
    MMC Lena 8.63 34.85 0.9207 1.4840 14.34 35.41 0.9401 1.5673
    PD 16.22 34.82 0.9234 1.4713 19.41 35.36 0.9382 1.5610
    MMC Boat 16.69 33.83 0.9204 1.9612 18.98 33.43 0.9178 1.9549
    PD 21.22 33.86 0.9222 1.9623 29.41 33.26 0.9166 1.9568
     | Show Table
    DownLoad: CSV

    Table 5.  PSNR values and CPUs for CT reconstruction with different projection numbers of MMC and PD method

    Image $ N_p $ 18 36 72
    Size CPU(s) PSNR SSIM Energy CPU(s) PSNR SSIM Energy CPU(s) PSNR SSIM Energy
    MMC Shepp 256 15.64 39.28 0.9908 0.0508 20.01 50.19 0.9995 0.0292 33.21 58.30 0.9998 0.0292
    PD 27.59 39.16 0.9901 0.0508 59.33 50.37 0.9995 0.0292 112.04 58.21 0.9998 0.0292
    MMC Fobild 256 21.33 27.96 0.9508 0.0595 24.15 37.66 0.9838 0.0421 40.21 45.06 0.9918 0.0423
    PD 25.02 27.92 0.9500 0.0600 71.21 37.17 0.9828 0.0421 140.10 45.16 0.9917 0.0425
    MMC Shepp 512 96.62 35.79 0.9881 0.0991 103.54 43.22 0.9911 0.0587 129.91 50.60 0.9995 0.0585
    PD 176.86 35.72 0.9879 0.0991 204.57 43.21 0.9911 0.0585 370.14 50.51 0.9995 0.0585
    MMC Fobild 512 130.01 31.29 0.9726 0.1501 153.52 37.90 0.9899 0.1557 179.58 48.88 0.9925 0.0861
    PD 187.02 31.23 0.9726 0.1501 248.01 37.86 0.9896 0.1557 457.51 48.83 0.9925 0.0861
     | Show Table
    DownLoad: CSV

    Table 6.  PSNR values and CPUs for MRI reconstruction with different numbers of sampling lines for the MMC and PD method

    $ N_s $ 30 50
    Pattern CPU PSNR SSIM Energy CPU PSNR SSIM Energy
    MMC Radial 4.78 32.15 0.9711 1.8840 10.19 38.41 0.9847 1.1673
    PD 13.22 32.08 0.9701 1.8840 19.41 38.36 0.9837 1.1675
    MMC Random 5.84 27.03 0.9500 2.0915 11.98 35.73 0.9812 2.0070
    PD 15.34 27.01 0.9504 2.0913 25.65 35.72 0.9812 2.0070
     | Show Table
    DownLoad: CSV
  • [1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.  doi: 10.1088/0266-5611/10/6/003.
    [2] S. T. Acton, Multigrid anisotropic diffusion, IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 7 (1998), 280-291. 
    [3] X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2 (2008), 455-484.  doi: 10.3934/ipi.2008.2.455.
    [4] C. Brito-Loeza and K. Chen, On high-order denoising models and fast algorithms for vector-valued images, IEEE Trans. Image Process., 19 (2010), 1518-1527.  doi: 10.1109/TIP.2010.2042655.
    [5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97. 
    [6] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [7] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25 (2016), 161-319.  doi: 10.1017/S096249291600009X.
    [8] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program., 159 (2016), 253-287.  doi: 10.1007/s10107-015-0957-3.
    [9] R. H. Chan and K. Chen, A multilevel algorithm for simultaneously denoising and deblurring images, SIAM J. Sci. Comput., 32 (2010), 1043-1063.  doi: 10.1137/080741410.
    [10] T. F. Chan and K. Chen, On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation, Numer. Algorithms, 41 (2006), 387-411.  doi: 10.1007/s11075-006-9020-z.
    [11] T. F. Chan and K. Chen, An optimization based multilevel algorithm for total variation image denoising, Multiscale Model. Simul., 5 (2006), 615-645.  doi: 10.1137/050644999.
    [12] T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62 (2002), 1019-1043.  doi: 10.1137/S0036139900368844.
    [13] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10 (2001), 266–277. doi: 10.1109/83.902291.
    [14] H. ChangX.-C. TaiL.-L. Wang and D. Yang, Convergence rate of overlapping domain decomposition methods for the Rudin-Osher-Fatemi model based on a dual formulation, SIAM J. Imaging Sci., 8 (2015), 564-591.  doi: 10.1137/140965016.
    [15] R. ChenJ. Huang and X.-C. Cai, A parallel domain decomposition algorithm for large scale image denoising, Inverse Probl. Imaging, 13 (2019), 1259-1282.  doi: 10.3934/ipi.2019055.
    [16] K. Chen and J. Savage, An accelerated algebraic multigrid algorithm for total-variation denoising, BIT, 47 (2007), 277-296.  doi: 10.1007/s10543-007-0123-2.
    [17] K. Chen and X.-C. Tai, A nonlinear multigrid method for total variation minimization from image restoration, J. Sci. Comput., 33 (2007), 115-138.  doi: 10.1007/s10915-007-9145-9.
    [18] Y. DuanH. Chang and X.-C. Tai, Convergent non-overlapping domain decomposition methods for variational image segmentation, J. Sci. Comput., 69 (2016), 532-555.  doi: 10.1007/s10915-016-0207-8.
    [19] E. EsserX. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), 1015-1046.  doi: 10.1137/09076934X.
    [20] D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM J. Sci. Comput., 31 (2009), 3712-3743.  doi: 10.1137/070706318.
    [21] T. Goldstein and S. Osher, The split Bregman method for ${L}_1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.  doi: 10.1137/080725891.
    [22] Y. GuL.-L. Wang and X.-C. Tai, A direct approach toward global minimization for multiphase labeling and segmentation problems, IEEE Trans. Image Process., 21 (2012), 2399-2411.  doi: 10.1109/TIP.2011.2182522.
    [23] M. Hintermüller and A. Langer, Non-overlapping domain decomposition methods for dual total variation based image denoising, J. Sci. Comput., 62 (2015), 456-481.  doi: 10.1007/s10915-014-9863-8.
    [24] A. Langer and F. Gaspoz, Overlapping domain decomposition methods for total variation denoising, SIAM J. Numer. Anal., 57 (2019), 1411-1444.  doi: 10.1137/18M1173782.
    [25] C.-O. Lee and C. Nam, Primal domain decomposition methods for the total variation minimization, based on dual decomposition, SIAM J. Sci. Comput., 39 (2017), B403–B423. doi: 10.1137/15M1049919.
    [26] C.-O. LeeC. Nam and J. Park, Domain decomposition methods using dual conversion for the total variation minimization with $L^1$ fidelity term, J. Sci. Comput., 78 (2019), 951-970.  doi: 10.1007/s10915-018-0791-x.
    [27] T. LuP. Neittaanmäki and X.-C. Tai, A parallel splitting up method and its application to Navier-Stokes equations, Appl. Math. Lett., 4 (1991), 25-29.  doi: 10.1016/0893-9659(91)90161-N.
    [28] A. Marquina and S. Osher, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput., 22 (2000), 387-405.  doi: 10.1137/S1064827599351751.
    [29] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [30] J. Savage and K. Chen, An improved and accelerated non-linear multigrid method for total-variation denoising, Int. J. Comput. Math., 82 (2005), 1001-1015.  doi: 10.1080/00207160500069904.
    [31] E. Y. SidkyJ. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065-3091.  doi: 10.1088/0031-9155/57/10/3065.
    [32] E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777. doi: 10.1088/0031-9155/53/17/021.
    [33] X.-C. Tai and Y. Duan, Domain decomposition methods with graph cuts algorithms for image segmentation., Int. J. Numer. Anal. Model., 8 (2011), 137-155. 
    [34] X.-C. Tai and J. Xu, Global and uniform convergence of subspace correction methods for some convex optimization problems, Math. Comp., 71 (2002), 105-124.  doi: 10.1090/S0025-5718-01-01311-4.
    [35] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238.  doi: 10.1137/0917016.
    [36] C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7 (1998), 813-824.  doi: 10.1109/83.679423.
    [37] Y. WangJ. YangW. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.  doi: 10.1137/080724265.
    [38] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.  doi: 10.1137/090767558.
    [39] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), 581-613.  doi: 10.1137/1034116.
    [40] J. XuH. B. Chang and J. Qin, Domain decomposition method for image deblurring, J. Comput. Appl. Math., 271 (2014), 401-414.  doi: 10.1016/j.cam.2014.03.030.
    [41] J. XuX.-C. Tai and L.-L. Wang, A two-level domain decomposition method for image restoration, Inverse Probl. Imaging, 4 (2010), 523-545.  doi: 10.3934/ipi.2010.4.523.
  • 加载中

Figures(9)

Tables(6)

SHARE

Article Metrics

HTML views(3375) PDF downloads(586) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return