February  2022, 16(1): 1-18. doi: 10.3934/ipi.2021038

A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem

Department of Computational Mathematics Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

* Corresponding author: Yang Yang

Received  January 2021 Revised  March 2021 Published  February 2022 Early access  April 2021

We present a non-iterative algorithm to reconstruct the isotropic acoustic wave speed from the measurement of the Neumann-to-Dirichlet map. The algorithm is designed based on the boundary control method and involves only computations that are stable. We prove the convergence of the algorithm and present its numerical implementation. The effectiveness of the algorithm is validated on both constant speed and variable speed, with full and partial boundary measurement as well as different levels of noise.

Citation: Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038
References:
[1]

I. B. Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010, 21 pp. doi: 10.1088/0266-5611/31/12/125010.

[2]

G. Bao and H. Zhang, Sensitivity analysis of an inverse problem for the wave equation with caustics, J. Amer. Math. Soc., 27 (2014), 953-981.  doi: 10.1090/S0894-0347-2014-00787-6.

[3]

M. I. Belishev, An approach to multidimensional inverse problems for the wave equation, Soviet Math. Dokl., 36 (1988), 481-484. 

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.

[5]

M. I. Belishev and V. Y. Gotlib, Dynamical variant of the BC-method: Theory and numerical testing, J. Inverse Ill-Posed Probl., 7 (1999), 221-240.  doi: 10.1515/jiip.1999.7.3.221.

[6]

M. I. BelishevI. B. IvanovI. V. Kubyshkin and V. S. Semenov, Numerical testing in determination of sound speed from a part of boundary by the BC-method, J. Inverse Ill-Posed Probl., 24 (2016), 159-180.  doi: 10.1515/jiip-2015-0052.

[7]

M. I. Belishev and Y. V. Kuryiev, To the reconstruction of a Riemannian manifold via its spectral data (BC–method), Comm. Partial Differential Equations, 17 (1992), 767-804.  doi: 10.1080/03605309208820863.

[8]

M. Bellassoued and I. B. Aïcha, Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, J. Math. Anal. Appl., 449 (2017), 46-76.  doi: 10.1016/j.jmaa.2016.11.082.

[9]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, Inverse Probl. Imaging, 5 (2011), 745-773.  doi: 10.3934/ipi.2011.5.745.

[10]

K. BinghamY. KurylevM. Lassas and S. Siltanen, Iterative time-reversal control for inverse problems, Inverse Probl. Imaging, 2 (2008), 63-81.  doi: 10.3934/ipi.2008.2.63.

[11]

A. S. Blagoveščenskiǐ, The inverse problem in the theory of seismic wave propagation, in Spectral Theory and Wave Processes, Springer, 1 (1966), 68–81.

[12]

E. Blåsten, F. Zouari, M. Louati and M. S. Ghidaoui, Blockage detection in networks: The area reconstruction method, Math. Eng., 1 (2019), 849–880. arXiv: 1909.05497. doi: 10.3934/mine.2019.4.849.

[13]

A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal., 22 (1985), 644-669.  doi: 10.1137/0722040.

[14]

R. Bosi, Y. Kurylev and M. Lassas, Reconstruction and stability in Gel'fand's inverse interior spectral problem, arXiv preprint, arXiv: 1702.07937.

[15]

M. V. de HoopP. Kepley and L. Oksanen, An exact redatuming procedure for the inverse boundary value problem for the wave equation, SIAM J. Appl. Math., 78 (2018), 171-192.  doi: 10.1137/16M1106729.

[16]

M. V. de HoopP. Kepley and L. Oksanen, Recovery of a smooth metric via wave field and coordinate transformation reconstruction, SIAM J. Appl. Math., 78 (2018), 1931-1953.  doi: 10.1137/17M1151481.

[17]

G. Eskin, A new approach to hyperbolic inverse problems, Inverse Problems, 22 (2006), 815-831.  doi: 10.1088/0266-5611/22/3/005.

[18]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.

[19]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov–Bohm effect, J. Math. Phys., 49 (2008), 022105, 18 pp. doi: 10.1063/1.2841329.

[20]

G. Eskin, Inverse problems for general second order hyperbolic equations with time-dependent coefficients, Bull. Math. Sci., 7 (2017), 247-307.  doi: 10.1007/s13373-017-0100-2.

[21]

G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9 (1998), 69-95.  doi: 10.1023/A:1018981221740.

[22]

A. Feizmohammadi and Y. Kian, Recovery of non-smooth coefficients appearing in anisotropic wave equations, SIAM J. Math. Anal., 51 (2019), 4953–4976. arXiv: 1903.08118. doi: 10.1137/19M1251394.

[23]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging 12 (2018), 745–772. arXiv: 1706.07212. doi: 10.3934/ipi.2018032.

[24]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.  doi: 10.1088/0266-5611/8/2/003.

[25]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.

[26]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2019), 5087-5126.  doi: 10.1093/imrn/rnx263.

[27]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, vol. 120, Springer Science & Business Media, 2011. doi: 10.1007/978-1-4419-8474-6.

[28]

J. KorpelaM. Lassas and L. Oksanen, Discrete regularization and convergence of the inverse problem for $1+1$ dimensional wave equation, Inverse Probl. Imaging, 13 (2019), 575-596.  doi: 10.3934/ipi.2019027.

[29]

V. D. Kupradze, On the approximate solution of problems in mathematical physics, (Russian) Uspehi Mat., 22 (1967), 59-107. 

[30]

Y. V. Kurylev and M. Lassas, Hyperbolic inverse problem with data on a part of the boundary, in UAB-GIT International Conference on Differential Equations and Mathematical Physics, American Mathematical Society, 16 (2000), 259–272.

[31]

Y. KurylevL. Oksanen and G. P. Paternain, Inverse problems for the connection laplacian, J. Differential Geom., 110 (2018), 457-494.  doi: 10.4310/jdg/1542423627.

[32]

I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data, J. Differential Equations, 94 (1991), 112-164.  doi: 10.1016/0022-0396(91)90106-J.

[33]

M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163 (2014), 1071-1103.  doi: 10.1215/00127094-2649534.

[34]

S. Liu and L. Oksanen, A Lipschitz stable reconstruction formula for the inverse problem for the wave equation, Trans. Amer. Math. Soc., 368 (2016), 319-335.  doi: 10.1090/tran/6332.

[35]

R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J. Numer. Anal., 14 (1977), 638-650.  doi: 10.1137/0714043.

[36]

T. P. Matthews and M. A. Anastasio, Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements, Inverse Problems, 33 (2017), 124002, 24 pp. doi: 10.1088/1361-6420/aa9384.

[37]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.  doi: 10.1080/03605302.2013.843429.

[38]

A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math., 128 (1988), 531-576.  doi: 10.2307/1971435.

[39]

L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary control method, Inverse Problems, 29 (2013), 035004, 12 pp. doi: 10.1088/0266-5611/29/3/035004.

[40]

L. N. Pestov, On reconstruction of the speed of sound from a part of boundary, J. Inverse Ill-Posed Probl., 7 (1999), 481-486.  doi: 10.1515/jiip.1999.7.5.481.

[41]

L. PestovV. Bolgova and O. Kazarina, Numerical recovering of a density by the BC-method, Inverse Probl. Imaging, 4 (2010), 703-712.  doi: 10.3934/ipi.2010.4.703.

[42]

A. G. Ramm and Ra kesh, Property $C$ and an inverse problem for a hyperbolic equation, J. Math. Anal. Appl., 156 (1991), 209-219.  doi: 10.1016/0022-247X(91)90391-C.

[43]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17 pp. doi: 10.1088/0266-5611/29/9/095015.

[44]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.

[45]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.  doi: 10.1006/jfan.1997.3188.

[46]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, Int. Math. Res. Not., 2005 (2005), 1047-1061.  doi: 10.1155/IMRN.2005.1047.

[47]

P. Stefanov and Y. Yang, The inverse problem for the Dirichlet-to-Neumann map on Lorentzian manifolds, Anal. PDE, 11 (2018), 1381-1414.  doi: 10.2140/apde.2018.11.1381.

[48]

D. Tataru, Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem, Comm. Partial Differential Equations, 20 (1995), 855-884.  doi: 10.1080/03605309508821117.

[49]

D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 185-206. 

show all references

References:
[1]

I. B. Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010, 21 pp. doi: 10.1088/0266-5611/31/12/125010.

[2]

G. Bao and H. Zhang, Sensitivity analysis of an inverse problem for the wave equation with caustics, J. Amer. Math. Soc., 27 (2014), 953-981.  doi: 10.1090/S0894-0347-2014-00787-6.

[3]

M. I. Belishev, An approach to multidimensional inverse problems for the wave equation, Soviet Math. Dokl., 36 (1988), 481-484. 

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.

[5]

M. I. Belishev and V. Y. Gotlib, Dynamical variant of the BC-method: Theory and numerical testing, J. Inverse Ill-Posed Probl., 7 (1999), 221-240.  doi: 10.1515/jiip.1999.7.3.221.

[6]

M. I. BelishevI. B. IvanovI. V. Kubyshkin and V. S. Semenov, Numerical testing in determination of sound speed from a part of boundary by the BC-method, J. Inverse Ill-Posed Probl., 24 (2016), 159-180.  doi: 10.1515/jiip-2015-0052.

[7]

M. I. Belishev and Y. V. Kuryiev, To the reconstruction of a Riemannian manifold via its spectral data (BC–method), Comm. Partial Differential Equations, 17 (1992), 767-804.  doi: 10.1080/03605309208820863.

[8]

M. Bellassoued and I. B. Aïcha, Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, J. Math. Anal. Appl., 449 (2017), 46-76.  doi: 10.1016/j.jmaa.2016.11.082.

[9]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, Inverse Probl. Imaging, 5 (2011), 745-773.  doi: 10.3934/ipi.2011.5.745.

[10]

K. BinghamY. KurylevM. Lassas and S. Siltanen, Iterative time-reversal control for inverse problems, Inverse Probl. Imaging, 2 (2008), 63-81.  doi: 10.3934/ipi.2008.2.63.

[11]

A. S. Blagoveščenskiǐ, The inverse problem in the theory of seismic wave propagation, in Spectral Theory and Wave Processes, Springer, 1 (1966), 68–81.

[12]

E. Blåsten, F. Zouari, M. Louati and M. S. Ghidaoui, Blockage detection in networks: The area reconstruction method, Math. Eng., 1 (2019), 849–880. arXiv: 1909.05497. doi: 10.3934/mine.2019.4.849.

[13]

A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal., 22 (1985), 644-669.  doi: 10.1137/0722040.

[14]

R. Bosi, Y. Kurylev and M. Lassas, Reconstruction and stability in Gel'fand's inverse interior spectral problem, arXiv preprint, arXiv: 1702.07937.

[15]

M. V. de HoopP. Kepley and L. Oksanen, An exact redatuming procedure for the inverse boundary value problem for the wave equation, SIAM J. Appl. Math., 78 (2018), 171-192.  doi: 10.1137/16M1106729.

[16]

M. V. de HoopP. Kepley and L. Oksanen, Recovery of a smooth metric via wave field and coordinate transformation reconstruction, SIAM J. Appl. Math., 78 (2018), 1931-1953.  doi: 10.1137/17M1151481.

[17]

G. Eskin, A new approach to hyperbolic inverse problems, Inverse Problems, 22 (2006), 815-831.  doi: 10.1088/0266-5611/22/3/005.

[18]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.

[19]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov–Bohm effect, J. Math. Phys., 49 (2008), 022105, 18 pp. doi: 10.1063/1.2841329.

[20]

G. Eskin, Inverse problems for general second order hyperbolic equations with time-dependent coefficients, Bull. Math. Sci., 7 (2017), 247-307.  doi: 10.1007/s13373-017-0100-2.

[21]

G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9 (1998), 69-95.  doi: 10.1023/A:1018981221740.

[22]

A. Feizmohammadi and Y. Kian, Recovery of non-smooth coefficients appearing in anisotropic wave equations, SIAM J. Math. Anal., 51 (2019), 4953–4976. arXiv: 1903.08118. doi: 10.1137/19M1251394.

[23]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging 12 (2018), 745–772. arXiv: 1706.07212. doi: 10.3934/ipi.2018032.

[24]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Problems, 8 (1992), 193-206.  doi: 10.1088/0266-5611/8/2/003.

[25]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.

[26]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemannian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2019), 5087-5126.  doi: 10.1093/imrn/rnx263.

[27]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, vol. 120, Springer Science & Business Media, 2011. doi: 10.1007/978-1-4419-8474-6.

[28]

J. KorpelaM. Lassas and L. Oksanen, Discrete regularization and convergence of the inverse problem for $1+1$ dimensional wave equation, Inverse Probl. Imaging, 13 (2019), 575-596.  doi: 10.3934/ipi.2019027.

[29]

V. D. Kupradze, On the approximate solution of problems in mathematical physics, (Russian) Uspehi Mat., 22 (1967), 59-107. 

[30]

Y. V. Kurylev and M. Lassas, Hyperbolic inverse problem with data on a part of the boundary, in UAB-GIT International Conference on Differential Equations and Mathematical Physics, American Mathematical Society, 16 (2000), 259–272.

[31]

Y. KurylevL. Oksanen and G. P. Paternain, Inverse problems for the connection laplacian, J. Differential Geom., 110 (2018), 457-494.  doi: 10.4310/jdg/1542423627.

[32]

I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data, J. Differential Equations, 94 (1991), 112-164.  doi: 10.1016/0022-0396(91)90106-J.

[33]

M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163 (2014), 1071-1103.  doi: 10.1215/00127094-2649534.

[34]

S. Liu and L. Oksanen, A Lipschitz stable reconstruction formula for the inverse problem for the wave equation, Trans. Amer. Math. Soc., 368 (2016), 319-335.  doi: 10.1090/tran/6332.

[35]

R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J. Numer. Anal., 14 (1977), 638-650.  doi: 10.1137/0714043.

[36]

T. P. Matthews and M. A. Anastasio, Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements, Inverse Problems, 33 (2017), 124002, 24 pp. doi: 10.1088/1361-6420/aa9384.

[37]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.  doi: 10.1080/03605302.2013.843429.

[38]

A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math., 128 (1988), 531-576.  doi: 10.2307/1971435.

[39]

L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary control method, Inverse Problems, 29 (2013), 035004, 12 pp. doi: 10.1088/0266-5611/29/3/035004.

[40]

L. N. Pestov, On reconstruction of the speed of sound from a part of boundary, J. Inverse Ill-Posed Probl., 7 (1999), 481-486.  doi: 10.1515/jiip.1999.7.5.481.

[41]

L. PestovV. Bolgova and O. Kazarina, Numerical recovering of a density by the BC-method, Inverse Probl. Imaging, 4 (2010), 703-712.  doi: 10.3934/ipi.2010.4.703.

[42]

A. G. Ramm and Ra kesh, Property $C$ and an inverse problem for a hyperbolic equation, J. Math. Anal. Appl., 156 (1991), 209-219.  doi: 10.1016/0022-247X(91)90391-C.

[43]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17 pp. doi: 10.1088/0266-5611/29/9/095015.

[44]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.

[45]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.  doi: 10.1006/jfan.1997.3188.

[46]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map, Int. Math. Res. Not., 2005 (2005), 1047-1061.  doi: 10.1155/IMRN.2005.1047.

[47]

P. Stefanov and Y. Yang, The inverse problem for the Dirichlet-to-Neumann map on Lorentzian manifolds, Anal. PDE, 11 (2018), 1381-1414.  doi: 10.2140/apde.2018.11.1381.

[48]

D. Tataru, Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem, Comm. Partial Differential Equations, 20 (1995), 855-884.  doi: 10.1080/03605309508821117.

[49]

D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 185-206. 

Figure 1.  Data acquisition scheme in USCT [36]
Figure 2.  The structure of $ [\Lambda_c] $ with $ I = 15 $ and $ L = 63 $. nz is the number of nonzero elements in the matrix
Figure 3.  The structure of $ [J],[P_T],[R],[K] $ with $ I = 15 $ and $ L = 63 $. nz is the number of nonzero elements in the matrix
Figure 4.  The singular values of $ [K] $ with $ I = 15,L = 63 $. $ [K] $ has 60 zero singular values
Figure 5.  Reconstructions of the constant speed $ c = 1 $. Top row: reconstructed $ c $. Bottom row: error between the reconstruction and the ground truth. First column: $ 0\% $ noise; the relative $ L^2 $-error is $ 0.4769\% $. Second column: $ 5\% $ noise; the relative $ L^2 $-error is $ 0.4873\% $. Third column: $ 50\% $ noise; the relative $ L^2 $-error is $ 0.5454\% $. Grid: $ 283\times51\times51 $, $ I = 50,L = 282 $
Figure 6.  Left: the variable speed $ c^{-2} = \sum\limits_{i = 1}^6\frac{i}{10}\phi^{(i)} $. Middle: the variable speed $ c(x,y) = 1+0.08\sin{\pi x}+0.06\cos{\pi y} $. Right: orthogonal projection of $ c(x,y) = 1+0.08\sin{\pi x}+0.06\cos{\pi y} $ on $ S_6 $
Figure 7.  Reconstructions of the variable speed $ c^{-2} = \sum\limits_{i = 1}^6\frac{i}{10}\phi^{(i)} $. Top row: reconstructed $ c $. Bottom row: error between the reconstruction and the ground truth. First column: First $ 2 $ harmonic functions; the relative $ L^2 $-error is $ 15.6987\% $. Second column: First $ 4 $ harmonic functions; the relative $ L^2 $-error is $ 0.7939\% $. Third column: All $ 6 $ harmonic functions; the relative $ L^2 $-error is $ 0.7907\% $. Grid: $ 323\times51\times51 $, $ I = 50,L = 163 $
Figure 8.  Reconstructions of the variable speed $ c(x,y) = 1+0.08\sin{\pi x}+0.06\cos{\pi y} $. Top row: reconstructed $ c $. Bottom row: error between the reconstruction and the orthogonal projection of the ground truth. First column: First $ 2 $ harmonic functions; the relative $ L^2 $-error is $ 12.3535\% $. Second column: First $ 4 $ harmonic functions; the relative $ L^2 $-error is $ 0.4139\% $. Third column: All $ 6 $ harmonic functions; the relative $ L^2 $-error is $ 0.3104\% $. Grid: $ 323\times51\times51 $, $ I = 50,L = 322 $
Figure 9.  Top row: reconstructed $ c $. Bottom row: error between the reconstruction and the ground truth. First column: no data on $ y = -1 $; the relative $ L^2 $-error is $ 0.4954\% $. Second column: no data on $ y = -1 $ and $ x = 1 $; the relative $ L^2 $-error is $ 0.6583\% $. Third column: no data on $ y = \pm 1 $ and $ x = 1 $; the relative $ L^2 $-error is $ 1.2518\% $. Grid: $ 283\times51\times51 $, $ I = 50,L = 282 $
Figure 10.  The ground truth speed c and its projection
Figure 11.  Left: reconstructed $ c $. Right: error between the reconstruction and the orthogonal projection of the ground truth. The relative $ L^2 $ error is $ 1.7289\% $. Grid: $ 283\times51\times51 $, $ I = 50,L = 282 $
Table 1.  Impact of random and constant noises on $ [K] $
Random Noise Relative Frobenius Error
10% 3.74%
20% 7.51%
50% 18.80%
Constant Noise Relative Frobenius Error
0.01 119.01%
0.02 238.01%
0.05 595.03%
Random Noise Relative Frobenius Error
10% 3.74%
20% 7.51%
50% 18.80%
Constant Noise Relative Frobenius Error
0.01 119.01%
0.02 238.01%
0.05 595.03%
[1]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[2]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[3]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, 2022, 16 (4) : 997-1017. doi: 10.3934/ipi.2022009

[4]

Fabián Crocce, Ernesto Mordecki. A non-iterative algorithm for generalized pig games. Journal of Dynamics and Games, 2018, 5 (4) : 331-341. doi: 10.3934/jdg.2018020

[5]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[6]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[7]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[8]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[9]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[10]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019

[11]

Roberto Triggiani, Xiang Wan. From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022007

[12]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[13]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure and Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[14]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[15]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems and Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[16]

R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, 2022, 16 (4) : 943-966. doi: 10.3934/ipi.2022006

[17]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[18]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[19]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[20]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (427)
  • HTML views (367)
  • Cited by (0)

Other articles
by authors

[Back to Top]