February  2022, 16(1): 39-67. doi: 10.3934/ipi.2021040

Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan

2. 

Department of Liberal Arts and Sciences, Faculty of Engineering, Takushoku University, Tatemachi, Hachioji, Tokyo, 193-0985, Japan

* Corresponding author: Xinchi Huang

Received  October 2020 Revised  March 2021 Published  February 2022 Early access  May 2021

Fund Project: The first author is supported by Japan Society for the Promotion of Science under the program of JSPS Postdoctoral Fellowships for Research in Japan

We consider a half-order time-fractional diffusion equation in arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional assumptions. We establish the stability estimate of Lipschitz type in the inverse problems and the proofs are based on the Bukhgeim-Klibanov method by using Carleman estimates.

Citation: Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040
References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resources Research, 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.

[2]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272. 

[3]

O. Y. Emanuvilov, Controllability of parabolic equations, Sbornik Math., 186 (1995), 879-900.  doi: 10.1070/sm1995v186n06abeh000047.

[4]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Seoul, 1996.

[5]

S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161.  doi: 10.1016/j.matpur.2018.04.004.

[6]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 34 (1998), 1027-1033.  doi: 10.1029/98WR00214.

[7]

X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Probl., 35 (2019), 045003. doi: 10.1088/1361-6420/ab0138.

[8]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Probl., 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.

[9]

V. Isakov, Inverse Problems for Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/0-387-32183-7.

[10]

A. Kawamoto, Lipschitz stability estimates in inverse source problems for a fractional diffusion equation of half order in time by Carleman estimates, J. Inverse Ill-Posed Probl., 26 (2018), 647-672.  doi: 10.1515/jiip-2016-0029.

[11]

A. Kawamoto and M. Machida, Lipschitz stability in inverse source and inverse coefficient problems for a first- and half-order time-fractional diffusion equation, SIAM J. Math. Anal., 52 (2020), 967-1005.  doi: 10.1137/18M1235776.

[12]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Probl., 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.

[13]

M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.  doi: 10.1515/jip-2012-0072.

[14]

M. V. Klibanov and A. A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, in Inverse and Ill-Posed Problems Series, Vol. 46, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.

[15]

Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol. 2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 411–430. doi: 10.1515/9783110571660-018.

[16]

Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol.2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 443–464. doi: 10.1515/9783110571660-020.

[17]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.

[18]

C. Ren and X. Xu, Local stability for an inverse coefficient problem of a fractional diffusion equation, Chin. Ann. Math., Ser. B, 35 (2014), 429-446.  doi: 10.1007/s11401-014-0833-0.

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.

[20]

X. XuJ. Cheng and M. Yamamoto, Carleman estimate for fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.  doi: 10.1080/00036811.2010.507199.

[21]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Probl., 28 (2012), 105010. doi: 10.1088/0266-5611/28/10/105010.

show all references

References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resources Research, 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.

[2]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272. 

[3]

O. Y. Emanuvilov, Controllability of parabolic equations, Sbornik Math., 186 (1995), 879-900.  doi: 10.1070/sm1995v186n06abeh000047.

[4]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Seoul, 1996.

[5]

S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161.  doi: 10.1016/j.matpur.2018.04.004.

[6]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 34 (1998), 1027-1033.  doi: 10.1029/98WR00214.

[7]

X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Probl., 35 (2019), 045003. doi: 10.1088/1361-6420/ab0138.

[8]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Probl., 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.

[9]

V. Isakov, Inverse Problems for Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/0-387-32183-7.

[10]

A. Kawamoto, Lipschitz stability estimates in inverse source problems for a fractional diffusion equation of half order in time by Carleman estimates, J. Inverse Ill-Posed Probl., 26 (2018), 647-672.  doi: 10.1515/jiip-2016-0029.

[11]

A. Kawamoto and M. Machida, Lipschitz stability in inverse source and inverse coefficient problems for a first- and half-order time-fractional diffusion equation, SIAM J. Math. Anal., 52 (2020), 967-1005.  doi: 10.1137/18M1235776.

[12]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Probl., 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.

[13]

M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.  doi: 10.1515/jip-2012-0072.

[14]

M. V. Klibanov and A. A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, in Inverse and Ill-Posed Problems Series, Vol. 46, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.

[15]

Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol. 2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 411–430. doi: 10.1515/9783110571660-018.

[16]

Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol.2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 443–464. doi: 10.1515/9783110571660-020.

[17]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.

[18]

C. Ren and X. Xu, Local stability for an inverse coefficient problem of a fractional diffusion equation, Chin. Ann. Math., Ser. B, 35 (2014), 429-446.  doi: 10.1007/s11401-014-0833-0.

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.

[20]

X. XuJ. Cheng and M. Yamamoto, Carleman estimate for fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.  doi: 10.1080/00036811.2010.507199.

[21]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Probl., 28 (2012), 105010. doi: 10.1088/0266-5611/28/10/105010.

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[4]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[5]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[6]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[7]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[8]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control and Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[9]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[10]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[11]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[12]

Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064

[13]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[14]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[15]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[16]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[17]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[18]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[19]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006

[20]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (285)
  • HTML views (343)
  • Cited by (0)

Other articles
by authors

[Back to Top]