• Previous Article
    Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation
  • IPI Home
  • This Issue
  • Next Article
    Learning to scan: A deep reinforcement learning approach for personalized scanning in CT imaging
doi: 10.3934/ipi.2021040
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan

2. 

Department of Liberal Arts and Sciences, Faculty of Engineering, Takushoku University, Tatemachi, Hachioji, Tokyo, 193-0985, Japan

* Corresponding author: Xinchi Huang

Received  October 2020 Revised  March 2021 Early access May 2021

Fund Project: The first author is supported by Japan Society for the Promotion of Science under the program of JSPS Postdoctoral Fellowships for Research in Japan

We consider a half-order time-fractional diffusion equation in arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional assumptions. We establish the stability estimate of Lipschitz type in the inverse problems and the proofs are based on the Bukhgeim-Klibanov method by using Carleman estimates.

Citation: Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems & Imaging, doi: 10.3934/ipi.2021040
References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resources Research, 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.  Google Scholar

[2]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[3]

O. Y. Emanuvilov, Controllability of parabolic equations, Sbornik Math., 186 (1995), 879-900.  doi: 10.1070/sm1995v186n06abeh000047.  Google Scholar

[4]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Seoul, 1996.  Google Scholar

[5]

S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161.  doi: 10.1016/j.matpur.2018.04.004.  Google Scholar

[6]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 34 (1998), 1027-1033.  doi: 10.1029/98WR00214.  Google Scholar

[7]

X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Probl., 35 (2019), 045003. doi: 10.1088/1361-6420/ab0138.  Google Scholar

[8]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Probl., 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[9]

V. Isakov, Inverse Problems for Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[10]

A. Kawamoto, Lipschitz stability estimates in inverse source problems for a fractional diffusion equation of half order in time by Carleman estimates, J. Inverse Ill-Posed Probl., 26 (2018), 647-672.  doi: 10.1515/jiip-2016-0029.  Google Scholar

[11]

A. Kawamoto and M. Machida, Lipschitz stability in inverse source and inverse coefficient problems for a first- and half-order time-fractional diffusion equation, SIAM J. Math. Anal., 52 (2020), 967-1005.  doi: 10.1137/18M1235776.  Google Scholar

[12]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Probl., 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[13]

M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.  doi: 10.1515/jip-2012-0072.  Google Scholar

[14]

M. V. Klibanov and A. A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, in Inverse and Ill-Posed Problems Series, Vol. 46, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.  Google Scholar

[15]

Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol. 2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 411–430. doi: 10.1515/9783110571660-018.  Google Scholar

[16]

Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol.2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 443–464. doi: 10.1515/9783110571660-020.  Google Scholar

[17]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[18]

C. Ren and X. Xu, Local stability for an inverse coefficient problem of a fractional diffusion equation, Chin. Ann. Math., Ser. B, 35 (2014), 429-446.  doi: 10.1007/s11401-014-0833-0.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

X. XuJ. Cheng and M. Yamamoto, Carleman estimate for fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.  doi: 10.1080/00036811.2010.507199.  Google Scholar

[21]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Probl., 28 (2012), 105010. doi: 10.1088/0266-5611/28/10/105010.  Google Scholar

show all references

References:
[1]

E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resources Research, 28 (1992), 3293-3307.  doi: 10.1029/92WR01757.  Google Scholar

[2]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[3]

O. Y. Emanuvilov, Controllability of parabolic equations, Sbornik Math., 186 (1995), 879-900.  doi: 10.1070/sm1995v186n06abeh000047.  Google Scholar

[4]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, Vol. 34, Seoul National University, Seoul, 1996.  Google Scholar

[5]

S. Guerrero and K. Kassab, Carleman estimate and null controllability of a fourth order parabolic equation in dimension $N\geq2$, J. Math. Pures Appl. (9), 121 (2019), 135-161.  doi: 10.1016/j.matpur.2018.04.004.  Google Scholar

[6]

Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research, 34 (1998), 1027-1033.  doi: 10.1029/98WR00214.  Google Scholar

[7]

X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Probl., 35 (2019), 045003. doi: 10.1088/1361-6420/ab0138.  Google Scholar

[8]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Probl., 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[9]

V. Isakov, Inverse Problems for Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[10]

A. Kawamoto, Lipschitz stability estimates in inverse source problems for a fractional diffusion equation of half order in time by Carleman estimates, J. Inverse Ill-Posed Probl., 26 (2018), 647-672.  doi: 10.1515/jiip-2016-0029.  Google Scholar

[11]

A. Kawamoto and M. Machida, Lipschitz stability in inverse source and inverse coefficient problems for a first- and half-order time-fractional diffusion equation, SIAM J. Math. Anal., 52 (2020), 967-1005.  doi: 10.1137/18M1235776.  Google Scholar

[12]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Probl., 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[13]

M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl., 21 (2013), 477-560.  doi: 10.1515/jip-2012-0072.  Google Scholar

[14]

M. V. Klibanov and A. A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, in Inverse and Ill-Posed Problems Series, Vol. 46, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.  Google Scholar

[15]

Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol. 2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 411–430. doi: 10.1515/9783110571660-018.  Google Scholar

[16]

Z. Li and M. Yamamoto, Inverse problems of determining coefficients of the fractional partial differential equations, in Handbook of Fractional Calculus with Applications. Vol.2: Fractional Differential Equations, De Gruyter, Berlin, (2019), 443–464. doi: 10.1515/9783110571660-020.  Google Scholar

[17]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[18]

C. Ren and X. Xu, Local stability for an inverse coefficient problem of a fractional diffusion equation, Chin. Ann. Math., Ser. B, 35 (2014), 429-446.  doi: 10.1007/s11401-014-0833-0.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

X. XuJ. Cheng and M. Yamamoto, Carleman estimate for fractional diffusion equation with half order and application, Appl. Anal., 90 (2011), 1355-1371.  doi: 10.1080/00036811.2010.507199.  Google Scholar

[21]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Probl., 25 (2009), 123013. doi: 10.1088/0266-5611/25/12/123013.  Google Scholar

[22]

M. Yamamoto and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Probl., 28 (2012), 105010. doi: 10.1088/0266-5611/28/10/105010.  Google Scholar

[1]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[4]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[5]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[6]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[7]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[8]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[9]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[10]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021055

[11]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[12]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[13]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[14]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[15]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[16]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[17]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[18]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[19]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[20]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

2020 Impact Factor: 1.639

Article outline

[Back to Top]