• Previous Article
    On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging
  • IPI Home
  • This Issue
  • Next Article
    Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates
February  2022, 16(1): 68-88. doi: 10.3934/ipi.2021041

A mathematical approach towards THz tomography for non-destructive imaging

1. 

Johann Radon Institute Linz, Altenbergerstraße 69, A-4040 Linz, Austria

2. 

Doctoral Program Computational Mathematics, Johannes Kepler University Linz, Altenbergerstraße 69, A-4040 Linz, Austria

3. 

Industrial Mathematics Institute, Johannes Kepler University Linz, Altenbergerstraße 69, A-4040 Linz, Austria

4. 

Research Center for Non-Destructive Testing GmbH (RECENDT), Altenbergerstraße 69, A-4040 Linz, Austria

* Corresponding author: Simon Hubmer

Received  October 2020 Revised  April 2021 Published  February 2022 Early access  May 2021

In this paper, we consider the imaging problem of terahertz (THz) tomography, in particular as it appears in non-destructive testing. We derive a nonlinear mathematical model describing a full THz tomography experiment, and consider linear approximations connecting THz tomography with standard computerized tomography and the Radon transform. Based on the derived models we propose different reconstruction approaches for solving the THz tomography problem, which we then compare on experimental data obtained from THz measurements of a plastic sample.

Citation: Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems and Imaging, 2022, 16 (1) : 68-88. doi: 10.3934/ipi.2021041
References:
[1]

E. AbrahamA. YounusC. AguerreP. Desbarats and P. Mounaix, Refraction losses in terahertz computed tomography, Optics Communications, 283 (2010), 2050-2055.  doi: 10.1016/j.optcom.2010.01.013.

[2]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.

[3]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.

[4]

V. Dicken, Simultaneous Activity and Attenuation Reconstruction in Single Photon Emission Computed Tomography, a Nonlinear Ill-Posed Problem, PhD thesis, Universität Potsdam, 1998.

[5]

V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.  doi: 10.1088/0266-5611/15/4/307.

[6]

R. J. B. DietzN. ViewegT. PuppeA. ZachB. GlobischT. GöbelP. Leisching and M. Schell, All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling, Optics Letters, 39 (2014), 6482-6485.  doi: 10.1364/OL.39.006482.

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.

[8]

B. FergusonS. WangD. GrayD. Abbot and X.-C. Zhang, T-ray computed tomography, Optics Letters, 27 (2002), 1312-1314.  doi: 10.1364/OL.27.001312.

[9]

P. FosodederS. HubmerA. PloierR. RamlauS. van Frank and C. Rankl, Phase-contrast THz-CT for non-destructive testing, Optics Express, 29 (2021), 15711-15723.  doi: 10.1364/OE.422961.

[10]

S. C. GarceaY. Wang and P. J. Withers, X-ray computed tomography of polymer composites, Composites Science and Technology, 156 (2018), 305-319.  doi: 10.1016/j.compscitech.2017.10.023.

[11] D. J. Griffiths, Introduction to Electrodynamics, 4th edition, Cambridge University Press, 2017.  doi: 10.1017/9781108333511.
[12]

J.-P. GuilletB. RecurL. FrederiqueB. BousquetL. CanioniI. Manek-HönningerP. Desbarats and P. Mounaix, Review of terahertz tomography techniques, Journal of Infrared, Millimeter, and Terahertz Waves, 35 (2014), 382-411.  doi: 10.1007/s10762-014-0057-0.

[13]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.  doi: 10.1007/s002110050158.

[14]

P. C. Hansen and J. Jorgensen, AIR tools Ⅱ: Algebraic iterative reconstruction methods, improved implementation, Numerical Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.

[15]

S. Hubmer and R. Ramlau, Convergence analysis of a two-point gradient method for nonlinear ill-posed problems, Inverse Problems, 33 (2017), 095004, http://stacks.iop.org/0266-5611/33/i=9/a=095004. doi: 10.1088/1361-6420/aa7ac7.

[16]

Y. JinG. Kim and S. Jeon, Terahertz Dielectric Properties of Polymers, Journal of the Korean Physical Society, 49 (2006), 513-517. 

[17]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear ill-posed problems, in Radon Series on Computational and Applied Mathematics, Vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.

[18]

B. Littau, J. Tepe, G. Schober, S. Kremling, T. Hochrein and P. Heidemeyer, Entwicklung und Evaluierung der Potenziale von Terahertz-Tomografie-Systemen, SKZ - Das Kunststoffzentrum (Eds.), Shaker Verlag, Aachen, 2016.

[19]

A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.

[20]

A. K. Louis and P. Maass, Contour Reconstruction in 3-D X-Ray CT, IEEE Transactions on Medical Imaging, 12 (1993), 764-769.  doi: 10.1109/42.251129.

[21]

S. Mukherjee and J. Federici, Study of structural defects inside natural cork by pulsed terahertz tomography, in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, (2011). doi: 10.1109/irmmw-THz.2011.6104965.

[22]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. doi: 10.1137/1.9780898719284.

[23]

J. Neu and C. A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS), Journal of Applied Physics, 124 (2018), 231101. doi: 10.1063/1.5047659.

[24]

D. M. Oberlin and E. M. Stein, Mapping properties of the radon transform, Indiana University Mathematics Journal, 31 (1982), 641-650.  doi: 10.1512/iumj.1982.31.31046.

[25]

B. RecurJ. P. GuilletL. BasselC. FragnolI. Manek-HönningerJ. DelagnesW. BenharboneP. DesbaratsJ. Domenger and P. Mounaix, Terahertz radiation for tomographic inspection, Optical Engineering, 51 (2012), 1-8.  doi: 10.1117/1.OE.51.9.091609.

[26]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numerical Functional Analysis and Optimization, 17 (1996), 197-214.  doi: 10.1080/01630569608816691.

[27]

S. SommerM. Koch and A. A. Buda, Terahertz time-domain spectroscopy of plasticized poly(vinyl chloride), Analytical Chemistry, 90 (2018), 2409-2413.  doi: 10.1021/acs.analchem.7b04548.

[28]

J. TepeT. Schuster and B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography, Inverse Problems in Science and Engineering, 25 (2017), 1448-1473.  doi: 10.1080/17415977.2016.1267168.

[29]

G. Trichopoulos and K. Sertel, Broadband terahertz computed tomography using a 5k-pixel real-time THz camera, Journal of Infrared, Millimeter, and Terahertz Waves, 36 (2015), 675-686.  doi: 10.1007/s10762-015-0144-x.

[30]

A. Wald and T. Schuster, Tomographic terahertz imaging using sequential subspace optimization, in New Trends in Parameter Identification for Mathematical Models, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-70824-9_14.

[31]

S. Wang and X.-C. Zhang, Pulsed terahertz tomography, Journal of Physics D: Applied Physics, 37 (2004), R1–R36. doi: 10.1088/0022-3727/37/4/R01.

[32]

M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg and A. Deninger, Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling, Applied Sciences, 9 (2019), 1283. doi: 10.3390/app9071283.

show all references

References:
[1]

E. AbrahamA. YounusC. AguerreP. Desbarats and P. Mounaix, Refraction losses in terahertz computed tomography, Optics Communications, 283 (2010), 2050-2055.  doi: 10.1016/j.optcom.2010.01.013.

[2]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.

[3]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.

[4]

V. Dicken, Simultaneous Activity and Attenuation Reconstruction in Single Photon Emission Computed Tomography, a Nonlinear Ill-Posed Problem, PhD thesis, Universität Potsdam, 1998.

[5]

V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.  doi: 10.1088/0266-5611/15/4/307.

[6]

R. J. B. DietzN. ViewegT. PuppeA. ZachB. GlobischT. GöbelP. Leisching and M. Schell, All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling, Optics Letters, 39 (2014), 6482-6485.  doi: 10.1364/OL.39.006482.

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.

[8]

B. FergusonS. WangD. GrayD. Abbot and X.-C. Zhang, T-ray computed tomography, Optics Letters, 27 (2002), 1312-1314.  doi: 10.1364/OL.27.001312.

[9]

P. FosodederS. HubmerA. PloierR. RamlauS. van Frank and C. Rankl, Phase-contrast THz-CT for non-destructive testing, Optics Express, 29 (2021), 15711-15723.  doi: 10.1364/OE.422961.

[10]

S. C. GarceaY. Wang and P. J. Withers, X-ray computed tomography of polymer composites, Composites Science and Technology, 156 (2018), 305-319.  doi: 10.1016/j.compscitech.2017.10.023.

[11] D. J. Griffiths, Introduction to Electrodynamics, 4th edition, Cambridge University Press, 2017.  doi: 10.1017/9781108333511.
[12]

J.-P. GuilletB. RecurL. FrederiqueB. BousquetL. CanioniI. Manek-HönningerP. Desbarats and P. Mounaix, Review of terahertz tomography techniques, Journal of Infrared, Millimeter, and Terahertz Waves, 35 (2014), 382-411.  doi: 10.1007/s10762-014-0057-0.

[13]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.  doi: 10.1007/s002110050158.

[14]

P. C. Hansen and J. Jorgensen, AIR tools Ⅱ: Algebraic iterative reconstruction methods, improved implementation, Numerical Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.

[15]

S. Hubmer and R. Ramlau, Convergence analysis of a two-point gradient method for nonlinear ill-posed problems, Inverse Problems, 33 (2017), 095004, http://stacks.iop.org/0266-5611/33/i=9/a=095004. doi: 10.1088/1361-6420/aa7ac7.

[16]

Y. JinG. Kim and S. Jeon, Terahertz Dielectric Properties of Polymers, Journal of the Korean Physical Society, 49 (2006), 513-517. 

[17]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear ill-posed problems, in Radon Series on Computational and Applied Mathematics, Vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.

[18]

B. Littau, J. Tepe, G. Schober, S. Kremling, T. Hochrein and P. Heidemeyer, Entwicklung und Evaluierung der Potenziale von Terahertz-Tomografie-Systemen, SKZ - Das Kunststoffzentrum (Eds.), Shaker Verlag, Aachen, 2016.

[19]

A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.

[20]

A. K. Louis and P. Maass, Contour Reconstruction in 3-D X-Ray CT, IEEE Transactions on Medical Imaging, 12 (1993), 764-769.  doi: 10.1109/42.251129.

[21]

S. Mukherjee and J. Federici, Study of structural defects inside natural cork by pulsed terahertz tomography, in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, (2011). doi: 10.1109/irmmw-THz.2011.6104965.

[22]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. doi: 10.1137/1.9780898719284.

[23]

J. Neu and C. A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS), Journal of Applied Physics, 124 (2018), 231101. doi: 10.1063/1.5047659.

[24]

D. M. Oberlin and E. M. Stein, Mapping properties of the radon transform, Indiana University Mathematics Journal, 31 (1982), 641-650.  doi: 10.1512/iumj.1982.31.31046.

[25]

B. RecurJ. P. GuilletL. BasselC. FragnolI. Manek-HönningerJ. DelagnesW. BenharboneP. DesbaratsJ. Domenger and P. Mounaix, Terahertz radiation for tomographic inspection, Optical Engineering, 51 (2012), 1-8.  doi: 10.1117/1.OE.51.9.091609.

[26]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numerical Functional Analysis and Optimization, 17 (1996), 197-214.  doi: 10.1080/01630569608816691.

[27]

S. SommerM. Koch and A. A. Buda, Terahertz time-domain spectroscopy of plasticized poly(vinyl chloride), Analytical Chemistry, 90 (2018), 2409-2413.  doi: 10.1021/acs.analchem.7b04548.

[28]

J. TepeT. Schuster and B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography, Inverse Problems in Science and Engineering, 25 (2017), 1448-1473.  doi: 10.1080/17415977.2016.1267168.

[29]

G. Trichopoulos and K. Sertel, Broadband terahertz computed tomography using a 5k-pixel real-time THz camera, Journal of Infrared, Millimeter, and Terahertz Waves, 36 (2015), 675-686.  doi: 10.1007/s10762-015-0144-x.

[30]

A. Wald and T. Schuster, Tomographic terahertz imaging using sequential subspace optimization, in New Trends in Parameter Identification for Mathematical Models, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-70824-9_14.

[31]

S. Wang and X.-C. Zhang, Pulsed terahertz tomography, Journal of Physics D: Applied Physics, 37 (2004), R1–R36. doi: 10.1088/0022-3727/37/4/R01.

[32]

M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg and A. Deninger, Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling, Applied Sciences, 9 (2019), 1283. doi: 10.3390/app9071283.

Figure 1.  Schematic drawing and image of the measurement setup. The THz radiation is generated by a transmitting antenna (Tx). Two Off-Axis Parabolic Mirrors (OPM) are used to create a focussed THz beam. After interacting with an object, the THz beam is guided to the detecting antenna (Rx) by two OPMs again. Exemplarily, a measured reference signal through air and one measured signal through an object is shown
Figure 2.  THz beam profile in the focal plane along the parallel scanning direction. The energy density distribution was measured by shifting a rectangular aperture through the focal spot in z-direction
Figure 3.  Triangular plastic sample (left), the measured electric field $ E_ {i,j} $ corresponding to $ ( {s_i,\theta_j}) = (35,0) $ (right, blue), and the reference field $ E_{\rm{ref}} $ (right, orange)
Figure 4.  An example for the presence of multiple peaks in a THz signal. (left) The THz beam partially travels through air and the object. (right) This gives rise to two dominant peaks in the THz signal, one arising from the pulse that travelled through air and a second one that travelled through the object respectively. For our reconstructions only the largest peak (main peak) is used
Figure 5.  Pre-processed data $ -2\log(\left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert) $ (left) and $ -\log(I_ {i,j}/ I_{\rm{ref}}) $ (right)
Figure 6.  Simulated measurement data $ \left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert $ for the triangular plastic sample depicted in Figure 3 (left), and the resulting reconstruction obtained via the nonlinear Landweber approach introduced in Section 4.1 (right)
Figure 7.  Pre-processed data $ \left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert $ obtained from THz measurements of the triangular plastic sample depicted in Figure 3 (left), and the resulting reconstruction obtained via the nonlinear Landweber approach introduced in Section 4.1 (right)
Figure 8.  Reconstructions for Problem 2 obtained from the data $ -2\log(\left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert) $ depicted in Figure 5 (right) via the application of the following reconstruction methods introduced in Section 4.2: filtered back-projection (top left), contour tomography (top right), Landweber iteration (bottom left), Tikhonov regularization (bottom right)
Figure 9.  Reconstructions for Problem 3 obtained from the data $ -\log(I_ {i,j}/ I_{\rm{ref}}) $ depicted in Figure 5 (left) via the application of the following reconstruction methods introduced in Section 4.2: filtered back-projection (top left), contour tomography (top right), Landweber iteration (bottom left), Tikhonov regularization (bottom right)
[1]

Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062

[2]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[3]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[4]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[5]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[6]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems and Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[7]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[8]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[9]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[10]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems and Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[11]

Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 427-444. doi: 10.3934/dcdss.2016005

[12]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[13]

Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems and Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507

[14]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[15]

Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2483-2499. doi: 10.3934/dcdsb.2021142

[16]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[17]

Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009

[18]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[19]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[20]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations and Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (284)
  • HTML views (339)
  • Cited by (0)

[Back to Top]