doi: 10.3934/ipi.2021041
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A mathematical approach towards THz tomography for non-destructive imaging

1. 

Johann Radon Institute Linz, Altenbergerstraße 69, A-4040 Linz, Austria

2. 

Doctoral Program Computational Mathematics, Johannes Kepler University Linz, Altenbergerstraße 69, A-4040 Linz, Austria

3. 

Industrial Mathematics Institute, Johannes Kepler University Linz, Altenbergerstraße 69, A-4040 Linz, Austria

4. 

Research Center for Non-Destructive Testing GmbH (RECENDT), Altenbergerstraße 69, A-4040 Linz, Austria

* Corresponding author: Simon Hubmer

Received  October 2020 Revised  April 2021 Early access May 2021

In this paper, we consider the imaging problem of terahertz (THz) tomography, in particular as it appears in non-destructive testing. We derive a nonlinear mathematical model describing a full THz tomography experiment, and consider linear approximations connecting THz tomography with standard computerized tomography and the Radon transform. Based on the derived models we propose different reconstruction approaches for solving the THz tomography problem, which we then compare on experimental data obtained from THz measurements of a plastic sample.

Citation: Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems & Imaging, doi: 10.3934/ipi.2021041
References:
[1]

E. AbrahamA. YounusC. AguerreP. Desbarats and P. Mounaix, Refraction losses in terahertz computed tomography, Optics Communications, 283 (2010), 2050-2055.  doi: 10.1016/j.optcom.2010.01.013.  Google Scholar

[2]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[3]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[4]

V. Dicken, Simultaneous Activity and Attenuation Reconstruction in Single Photon Emission Computed Tomography, a Nonlinear Ill-Posed Problem, PhD thesis, Universität Potsdam, 1998. Google Scholar

[5]

V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.  doi: 10.1088/0266-5611/15/4/307.  Google Scholar

[6]

R. J. B. DietzN. ViewegT. PuppeA. ZachB. GlobischT. GöbelP. Leisching and M. Schell, All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling, Optics Letters, 39 (2014), 6482-6485.  doi: 10.1364/OL.39.006482.  Google Scholar

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.  Google Scholar

[8]

B. FergusonS. WangD. GrayD. Abbot and X.-C. Zhang, T-ray computed tomography, Optics Letters, 27 (2002), 1312-1314.  doi: 10.1364/OL.27.001312.  Google Scholar

[9]

P. FosodederS. HubmerA. PloierR. RamlauS. van Frank and C. Rankl, Phase-contrast THz-CT for non-destructive testing, Optics Express, 29 (2021), 15711-15723.  doi: 10.1364/OE.422961.  Google Scholar

[10]

S. C. GarceaY. Wang and P. J. Withers, X-ray computed tomography of polymer composites, Composites Science and Technology, 156 (2018), 305-319.  doi: 10.1016/j.compscitech.2017.10.023.  Google Scholar

[11] D. J. Griffiths, Introduction to Electrodynamics, 4th edition, Cambridge University Press, 2017.  doi: 10.1017/9781108333511.  Google Scholar
[12]

J.-P. GuilletB. RecurL. FrederiqueB. BousquetL. CanioniI. Manek-HönningerP. Desbarats and P. Mounaix, Review of terahertz tomography techniques, Journal of Infrared, Millimeter, and Terahertz Waves, 35 (2014), 382-411.  doi: 10.1007/s10762-014-0057-0.  Google Scholar

[13]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[14]

P. C. Hansen and J. Jorgensen, AIR tools Ⅱ: Algebraic iterative reconstruction methods, improved implementation, Numerical Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.  Google Scholar

[15]

S. Hubmer and R. Ramlau, Convergence analysis of a two-point gradient method for nonlinear ill-posed problems, Inverse Problems, 33 (2017), 095004, http://stacks.iop.org/0266-5611/33/i=9/a=095004. doi: 10.1088/1361-6420/aa7ac7.  Google Scholar

[16]

Y. JinG. Kim and S. Jeon, Terahertz Dielectric Properties of Polymers, Journal of the Korean Physical Society, 49 (2006), 513-517.   Google Scholar

[17]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear ill-posed problems, in Radon Series on Computational and Applied Mathematics, Vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[18]

B. Littau, J. Tepe, G. Schober, S. Kremling, T. Hochrein and P. Heidemeyer, Entwicklung und Evaluierung der Potenziale von Terahertz-Tomografie-Systemen, SKZ - Das Kunststoffzentrum (Eds.), Shaker Verlag, Aachen, 2016. Google Scholar

[19]

A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.  Google Scholar

[20]

A. K. Louis and P. Maass, Contour Reconstruction in 3-D X-Ray CT, IEEE Transactions on Medical Imaging, 12 (1993), 764-769.  doi: 10.1109/42.251129.  Google Scholar

[21]

S. Mukherjee and J. Federici, Study of structural defects inside natural cork by pulsed terahertz tomography, in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, (2011). doi: 10.1109/irmmw-THz.2011.6104965.  Google Scholar

[22]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[23]

J. Neu and C. A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS), Journal of Applied Physics, 124 (2018), 231101. doi: 10.1063/1.5047659.  Google Scholar

[24]

D. M. Oberlin and E. M. Stein, Mapping properties of the radon transform, Indiana University Mathematics Journal, 31 (1982), 641-650.  doi: 10.1512/iumj.1982.31.31046.  Google Scholar

[25]

B. RecurJ. P. GuilletL. BasselC. FragnolI. Manek-HönningerJ. DelagnesW. BenharboneP. DesbaratsJ. Domenger and P. Mounaix, Terahertz radiation for tomographic inspection, Optical Engineering, 51 (2012), 1-8.  doi: 10.1117/1.OE.51.9.091609.  Google Scholar

[26]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numerical Functional Analysis and Optimization, 17 (1996), 197-214.  doi: 10.1080/01630569608816691.  Google Scholar

[27]

S. SommerM. Koch and A. A. Buda, Terahertz time-domain spectroscopy of plasticized poly(vinyl chloride), Analytical Chemistry, 90 (2018), 2409-2413.  doi: 10.1021/acs.analchem.7b04548.  Google Scholar

[28]

J. TepeT. Schuster and B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography, Inverse Problems in Science and Engineering, 25 (2017), 1448-1473.  doi: 10.1080/17415977.2016.1267168.  Google Scholar

[29]

G. Trichopoulos and K. Sertel, Broadband terahertz computed tomography using a 5k-pixel real-time THz camera, Journal of Infrared, Millimeter, and Terahertz Waves, 36 (2015), 675-686.  doi: 10.1007/s10762-015-0144-x.  Google Scholar

[30]

A. Wald and T. Schuster, Tomographic terahertz imaging using sequential subspace optimization, in New Trends in Parameter Identification for Mathematical Models, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-70824-9_14.  Google Scholar

[31]

S. Wang and X.-C. Zhang, Pulsed terahertz tomography, Journal of Physics D: Applied Physics, 37 (2004), R1–R36. doi: 10.1088/0022-3727/37/4/R01.  Google Scholar

[32]

M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg and A. Deninger, Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling, Applied Sciences, 9 (2019), 1283. doi: 10.3390/app9071283.  Google Scholar

show all references

References:
[1]

E. AbrahamA. YounusC. AguerreP. Desbarats and P. Mounaix, Refraction losses in terahertz computed tomography, Optics Communications, 283 (2010), 2050-2055.  doi: 10.1016/j.optcom.2010.01.013.  Google Scholar

[2]

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.  doi: 10.1137/080716542.  Google Scholar

[3]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[4]

V. Dicken, Simultaneous Activity and Attenuation Reconstruction in Single Photon Emission Computed Tomography, a Nonlinear Ill-Posed Problem, PhD thesis, Universität Potsdam, 1998. Google Scholar

[5]

V. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.  doi: 10.1088/0266-5611/15/4/307.  Google Scholar

[6]

R. J. B. DietzN. ViewegT. PuppeA. ZachB. GlobischT. GöbelP. Leisching and M. Schell, All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling, Optics Letters, 39 (2014), 6482-6485.  doi: 10.1364/OL.39.006482.  Google Scholar

[7]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.  Google Scholar

[8]

B. FergusonS. WangD. GrayD. Abbot and X.-C. Zhang, T-ray computed tomography, Optics Letters, 27 (2002), 1312-1314.  doi: 10.1364/OL.27.001312.  Google Scholar

[9]

P. FosodederS. HubmerA. PloierR. RamlauS. van Frank and C. Rankl, Phase-contrast THz-CT for non-destructive testing, Optics Express, 29 (2021), 15711-15723.  doi: 10.1364/OE.422961.  Google Scholar

[10]

S. C. GarceaY. Wang and P. J. Withers, X-ray computed tomography of polymer composites, Composites Science and Technology, 156 (2018), 305-319.  doi: 10.1016/j.compscitech.2017.10.023.  Google Scholar

[11] D. J. Griffiths, Introduction to Electrodynamics, 4th edition, Cambridge University Press, 2017.  doi: 10.1017/9781108333511.  Google Scholar
[12]

J.-P. GuilletB. RecurL. FrederiqueB. BousquetL. CanioniI. Manek-HönningerP. Desbarats and P. Mounaix, Review of terahertz tomography techniques, Journal of Infrared, Millimeter, and Terahertz Waves, 35 (2014), 382-411.  doi: 10.1007/s10762-014-0057-0.  Google Scholar

[13]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[14]

P. C. Hansen and J. Jorgensen, AIR tools Ⅱ: Algebraic iterative reconstruction methods, improved implementation, Numerical Algorithms, 79 (2018), 107-137.  doi: 10.1007/s11075-017-0430-x.  Google Scholar

[15]

S. Hubmer and R. Ramlau, Convergence analysis of a two-point gradient method for nonlinear ill-posed problems, Inverse Problems, 33 (2017), 095004, http://stacks.iop.org/0266-5611/33/i=9/a=095004. doi: 10.1088/1361-6420/aa7ac7.  Google Scholar

[16]

Y. JinG. Kim and S. Jeon, Terahertz Dielectric Properties of Polymers, Journal of the Korean Physical Society, 49 (2006), 513-517.   Google Scholar

[17]

B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear ill-posed problems, in Radon Series on Computational and Applied Mathematics, Vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. doi: 10.1515/9783110208276.  Google Scholar

[18]

B. Littau, J. Tepe, G. Schober, S. Kremling, T. Hochrein and P. Heidemeyer, Entwicklung und Evaluierung der Potenziale von Terahertz-Tomografie-Systemen, SKZ - Das Kunststoffzentrum (Eds.), Shaker Verlag, Aachen, 2016. Google Scholar

[19]

A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.  Google Scholar

[20]

A. K. Louis and P. Maass, Contour Reconstruction in 3-D X-Ray CT, IEEE Transactions on Medical Imaging, 12 (1993), 764-769.  doi: 10.1109/42.251129.  Google Scholar

[21]

S. Mukherjee and J. Federici, Study of structural defects inside natural cork by pulsed terahertz tomography, in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, (2011). doi: 10.1109/irmmw-THz.2011.6104965.  Google Scholar

[22]

F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[23]

J. Neu and C. A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS), Journal of Applied Physics, 124 (2018), 231101. doi: 10.1063/1.5047659.  Google Scholar

[24]

D. M. Oberlin and E. M. Stein, Mapping properties of the radon transform, Indiana University Mathematics Journal, 31 (1982), 641-650.  doi: 10.1512/iumj.1982.31.31046.  Google Scholar

[25]

B. RecurJ. P. GuilletL. BasselC. FragnolI. Manek-HönningerJ. DelagnesW. BenharboneP. DesbaratsJ. Domenger and P. Mounaix, Terahertz radiation for tomographic inspection, Optical Engineering, 51 (2012), 1-8.  doi: 10.1117/1.OE.51.9.091609.  Google Scholar

[26]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems, Numerical Functional Analysis and Optimization, 17 (1996), 197-214.  doi: 10.1080/01630569608816691.  Google Scholar

[27]

S. SommerM. Koch and A. A. Buda, Terahertz time-domain spectroscopy of plasticized poly(vinyl chloride), Analytical Chemistry, 90 (2018), 2409-2413.  doi: 10.1021/acs.analchem.7b04548.  Google Scholar

[28]

J. TepeT. Schuster and B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography, Inverse Problems in Science and Engineering, 25 (2017), 1448-1473.  doi: 10.1080/17415977.2016.1267168.  Google Scholar

[29]

G. Trichopoulos and K. Sertel, Broadband terahertz computed tomography using a 5k-pixel real-time THz camera, Journal of Infrared, Millimeter, and Terahertz Waves, 36 (2015), 675-686.  doi: 10.1007/s10762-015-0144-x.  Google Scholar

[30]

A. Wald and T. Schuster, Tomographic terahertz imaging using sequential subspace optimization, in New Trends in Parameter Identification for Mathematical Models, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-70824-9_14.  Google Scholar

[31]

S. Wang and X.-C. Zhang, Pulsed terahertz tomography, Journal of Physics D: Applied Physics, 37 (2004), R1–R36. doi: 10.1088/0022-3727/37/4/R01.  Google Scholar

[32]

M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg and A. Deninger, Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling, Applied Sciences, 9 (2019), 1283. doi: 10.3390/app9071283.  Google Scholar

Figure 1.  Schematic drawing and image of the measurement setup. The THz radiation is generated by a transmitting antenna (Tx). Two Off-Axis Parabolic Mirrors (OPM) are used to create a focussed THz beam. After interacting with an object, the THz beam is guided to the detecting antenna (Rx) by two OPMs again. Exemplarily, a measured reference signal through air and one measured signal through an object is shown
Figure 2.  THz beam profile in the focal plane along the parallel scanning direction. The energy density distribution was measured by shifting a rectangular aperture through the focal spot in z-direction
Figure 3.  Triangular plastic sample (left), the measured electric field $ E_ {i,j} $ corresponding to $ ( {s_i,\theta_j}) = (35,0) $ (right, blue), and the reference field $ E_{\rm{ref}} $ (right, orange)
Figure 4.  An example for the presence of multiple peaks in a THz signal. (left) The THz beam partially travels through air and the object. (right) This gives rise to two dominant peaks in the THz signal, one arising from the pulse that travelled through air and a second one that travelled through the object respectively. For our reconstructions only the largest peak (main peak) is used
Figure 5.  Pre-processed data $ -2\log(\left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert) $ (left) and $ -\log(I_ {i,j}/ I_{\rm{ref}}) $ (right)
Figure 6.  Simulated measurement data $ \left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert $ for the triangular plastic sample depicted in Figure 3 (left), and the resulting reconstruction obtained via the nonlinear Landweber approach introduced in Section 4.1 (right)
Figure 7.  Pre-processed data $ \left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert $ obtained from THz measurements of the triangular plastic sample depicted in Figure 3 (left), and the resulting reconstruction obtained via the nonlinear Landweber approach introduced in Section 4.1 (right)
Figure 8.  Reconstructions for Problem 2 obtained from the data $ -2\log(\left\vert{P_ {i,j}/ P_{\rm{ref}}}\right\vert) $ depicted in Figure 5 (right) via the application of the following reconstruction methods introduced in Section 4.2: filtered back-projection (top left), contour tomography (top right), Landweber iteration (bottom left), Tikhonov regularization (bottom right)
Figure 9.  Reconstructions for Problem 3 obtained from the data $ -\log(I_ {i,j}/ I_{\rm{ref}}) $ depicted in Figure 5 (left) via the application of the following reconstruction methods introduced in Section 4.2: filtered back-projection (top left), contour tomography (top right), Landweber iteration (bottom left), Tikhonov regularization (bottom right)
[1]

Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems & Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062

[2]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[3]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[4]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[5]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[6]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[7]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[8]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[9]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[10]

Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 427-444. doi: 10.3934/dcdss.2016005

[11]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems & Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[12]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[13]

Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507

[14]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[15]

Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021142

[16]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[17]

Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009

[18]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[19]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[20]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (40)
  • HTML views (150)
  • Cited by (0)

[Back to Top]