[1]
|
F. Alouges, A new finite element scheme for Landau-Lifchitz equations, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 187-196.
doi: 10.3934/dcdss.2008.1.187.
|
[2]
|
F. Alouges, E. Kritsikis, J. Steiner and J.-C. Toussaint, A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation, Numerische Mathematik, 128 (2014), 407-430.
doi: 10.1007/s00211-014-0615-3.
|
[3]
|
L. Baňas, M. Page and D. Praetorius, A convergent linear finite element scheme for the Maxwell-Landau-Lifshitz-Gilbert equations, Electronic Transactions on Numerical Analysis, 44 (2015), 250-270.
|
[4]
|
L. Baňas, M. Page, D. Praetorius and J. Rochat, A decoupled and unconditionally convergent linear FEM integrator for the Landau-Lifshitz-Gilbert equation with magnetostriction, IMA Journal of Numerical Analysis, 34 (2014), 1361-1385.
doi: 10.1093/imanum/drt050.
|
[5]
|
S. Bartels and A. Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 44 (2006), 1405-1419.
doi: 10.1137/050631070.
|
[6]
|
S. Bartels and A. Prohl, Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres, Numerische Mathematik, 109 (2008), 489-507.
doi: 10.1007/s00211-008-0150-1.
|
[7]
|
J. Baumeister, B. Kaltenbacher and A. Leitão, On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations, Inverse Problems and Imaging, 4 (2010), 335-350.
doi: 10.3934/ipi.2010.4.335.
|
[8]
|
F. Binder, F. Schöpfer and T. Schuster, Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements, Inverse Problems, 31 (2015), 025006.
doi: 10.1088/0266-5611/31/2/025006.
|
[9]
|
S. E. Blanke, B. N. Hahn and A. Wald, Inverse problems with inexact forward operator: Iterative regularization and application in dynamic imaging, Inverse Problems, 36 (2020), 124001.
doi: 10.1088/1361-6420/abb5e1.
|
[10]
|
L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99–R136.
doi: 10.1088/0266-5611/18/6/201.
|
[11]
|
J. Borgert, J. D. Schmidt, I. Schmale, J. Rahmer, C. Bontus, B. Gleich, B. David, R. Eckart, O. Woywode, J. Weizenecker, J. Schnorr, M. Taupitz, J. Haegele, F. M. Vogt and J. Barkhausen, Fundamentals and applications of magnetic particle imaging, Journal of Cardiovascular Computed Tomography, 6 (2012), 149-153.
doi: 10.1016/j.jcct.2012.04.007.
|
[12]
|
I. Cimrák, A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism, Archives of Computational Methods in Engineering, 15 (2008), 277-309.
doi: 10.1007/s11831-008-9021-2.
|
[13]
|
L. R. Croft, P. W. Goodwill and S. M. Conolly, Relaxation in x-space magnetic particle imaging, IEEE Transactions on Medical Imaging, 31 (2012), 2335-2342.
doi: 10.1007/978-3-642-24133-8_24.
|
[14]
|
P. Elbau, L. Mindrinos and O. Scherzer, Inverse problems of combined photoacoustic and optical coherence tomography, Mathematical Methods in the Applied Sciences, 40 (2017), 505-522.
doi: 10.1002/mma.3915.
|
[15]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, AMS, Providence, RI, 1998.
|
[16]
|
B. Gleich and J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature, 435 (2005), 1214-1217.
doi: 10.1038/nature03808.
|
[17]
|
B. Guo and M.-C. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Partial Differential Equations, 1 (1993), 311-334.
doi: 10.1007/BF01191298.
|
[18]
|
M. Haltmeier, R. Kowar, A. Leitao and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations Ⅱ: Applications, Inverse Problems and Imaging, 1 (2007), 507-523.
doi: 10.3934/ipi.2007.1.507.
|
[19]
|
M. Haltmeier, A. Leitao and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations Ⅰ: Convergence analysis, Inverse Problems and Imaging, 1 (2007), 289-298.
doi: 10.3934/ipi.2007.1.289.
|
[20]
|
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numerische Mathematik, 72 (1995), 21-37.
doi: 10.1007/s002110050158.
|
[21]
|
B. Kaltenbacher, All-at-once versus reduced iterative methods for time dependent inverse problems, Inverse Problems, 33 (2017), 064002.
doi: 10.1088/1361-6420/aa6f34.
|
[22]
|
B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative regularization methods for nonlinear ill-posed problems, in Radon Series on Computational and Applied Mathematics, Vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
doi: 10.1515/9783110208276.
|
[23]
|
B. Kaltenbacher, T. Nguyen, A. Wald and T. Schuster, Parameter Identification for the Landau-Lifshitz-Gilbert Equation in Magnetic Particle Imaging, Parameter Identification for the Landau-Lifshitz-Gilbert Equation in Magnetic Particle Imaging, Time-Dependent Problems in Imaging and Parameter Identification
doi: 10.1007/978-3-030-57784-1_13.
|
[24]
|
A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer New York Dordrecht Heidelberg London, 2011.
|
[25]
|
T. Kluth, Mathematical models for magnetic particle imaging, Inverse Problems, 34 (2018), 083001.
doi: 10.1088/1361-6420/aac535.
|
[26]
|
T. Knopp and T. M. Buzug, Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation, Springer Berlin Heidelberg, 2012.
|
[27]
|
T. Knopp, N. Gdaniec and M. Möddel, Magnetic particle imaging: From proof of principle to preclinical applications, Physics in Medicine & Biology, 62 (2017), R124.
doi: 10.1088/1361-6560/aa6c99.
|
[28]
|
R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems, Ill-Posed and Inverse Problems, 23 (2002), 69-90.
|
[29]
|
M. Kružík and A. Prohl, Recent developments in the modeling, analysis and numerics of ferromagnetism, SIAM Rev., 48 (2006), 439-483.
doi: 10.1137/S0036144504446187.
|
[30]
|
F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart, John Wiley & Sons, Ltd., Chichester, 1986.
|
[31]
|
T. T. N. Nguyen, Landweber-Kaczmarz for parameter identification in time-dependent inverse problems: All-at-once versus reduced version, Inverse Problems, 35 (2019), 035009.
doi: 10.1088/1361-6420/aaf9ba.
|
[32]
|
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser/Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0513-1.
|
[33]
|
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, Vol. 112, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/112.
|