[1]
|
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg and J. Sijbers, Fast and flexible x-ray tomography using the astra toolbox, Optics Express, 22 (2016), 25129-25147.
|
[2]
|
W. van Aarle, W. J. Palenstijn, J. D. Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg and J. Sijbers, The astra toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 24 (2015), 35-47.
|
[3]
|
J. Adler and O. Oktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1322-1332.
|
[4]
|
K. J. Batenburg, W. J. Palenstijn, P. Balázs and J. Sijbers, Dynamic angle selection in binary tomography, Computer Vision and Image Understanding, 117 (2013), 306-318.
|
[5]
|
I. Bello, H. Pham, Q. V Le, M. Norouzi and S. Bengio, Neural combinatorial optimization with reinforcement learning, preprint, arXiv: 1611.09940, 2016.
|
[6]
|
S. Boyd and N. Parikh, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2011), 1-122.
|
[7]
|
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 2 (2005), 490-530.
doi: 10.1137/040616024.
|
[8]
|
J.-F. Cai, S. Osher and Z. Shen, Split bregman methods and frame based image restoration, Multiscale Modeling and Simulation, 8 (2009), 337-369.
doi: 10.1137/090753504.
|
[9]
|
J.-F. Cai, H. Ji, Z. Shen and G. B. Ye, Data-driven tight frame construction and image denoising, Applied and Computational Harmonic Analysis, 37 (2014), 89-105.
doi: 10.1016/j.acha.2013.10.001.
|
[10]
|
E. J. Candes, Y. C. Eldar, et al., Compressed Sensing With Coherent and Redundant Dictionaries, 2010.
|
[11]
|
E. J. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083.
|
[12]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[13]
|
H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou and G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network, IEEE Transactions on Medical Imaging, 36 (2017), 2524-2535.
|
[14]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[15]
|
A. Dabravolski, K. J. Batenburg and J. Sijbers, Dynamic angle selection in x-ray computed tomography, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 324 (2014), 17-24.
|
[16]
|
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.
doi: 10.1137/1.9781611970104.
|
[17]
|
B. Dong, J. Li and Z. Shen, X-ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting, Journal of Scientific Computing, 54 (2013), 333-349.
doi: 10.1007/s10915-012-9579-6.
|
[18]
|
B. Dong and Z. Shen, et al., Mra based wavelet frames and applications, IAS Lecture Notes Series, Summer Program on "The Mathematics of Image Processing", Park City Mathematics Institute, 19 (2010), 9-158.
doi: 10.1090/pcms/019/02.
|
[19]
|
D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
|
[20]
|
J. M. Ede, Adaptive partial scanning transmission electron microscopy with reinforcement learning, preprint, arXiv: 2004.02786.
|
[21]
|
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, 15 (2006), 3736-3745.
doi: 10.1109/TIP.2006.881969.
|
[22]
|
E. Esser and X. Zhang, et al., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[23]
|
M. Gies, W. A. Kalender, H. Wolf and C. Suess, Dose reduction in CT by anatomically adapted tube current modulation. i. Simulation studies, Medical Physics, 26 (1999), 2235-2247.
|
[24]
|
G. D. Godaliyadda, M. A. Uchic, D. H. Ye, M. A. Groeber, G. T. Buzzard and C. A. Bouman, A supervised learning approach for dynamic sampling, S & T Imaging. International Society for Optics and Photonics, 2016.
|
[25]
|
G. M. D. P. Godaliyadda, D. H. Ye, M. D. Uchic, M. A. Groeber, G. T. Buzzard and C. A. Bouman, A framework for dynamic image sampling based on supervised learning (slads), IEEE Trans. Comput. Imaging, 4 (2018), 1-16.
doi: 10.1109/TCI.2017.2777482.
|
[26]
|
T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[27]
|
T. Goldstein and S. Osher, The split bregman method for $l_1$-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[28]
|
R. Gordon, R. Benderab and G. T. Herman, Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-ray Photography, Journal of Theoretical Biology, 1970.
|
[29]
|
S. Gu, L. Zhang, W. Zuo and X. Feng, Weighted nuclear norm minimization with application to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 2862–2869.
|
[30]
|
A. Halimi, P. Ciuciu, A. Mccarthy, S. Mclaughlin and G. Buller, Fast adaptive scene sampling for single-photon 3d lidar images, IEEE CAMSAP 2019 - International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2019.
|
[31]
|
S. Ji, Y. Xue and L. Carin, Bayesian compressive sensing, IEEE Transactions on Signal Processing, 56 (2008), 2346-2356.
doi: 10.1109/TSP.2007.914345.
|
[32]
|
K. H. Jin, M. T. McCann, E. Froustey and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Transactions on Image Processing, 26 (2017), 4509-4522.
doi: 10.1109/TIP.2017.2713099.
|
[33]
|
W. A. Kalender, H. Wolf and C. Suess, Dose reduction in CT by anatomically adapted tube current modulation. ii. Phantom measurements, Medical Physics, 26 (1999), 2248-2253.
|
[34]
|
E. Kang, J. Min and J. C. Ye, A deep conversational neural network using directional wavelets for low-dose x-ray ct reconstruction, Medical Physics, 44 (2017), e360–e375.
doi: 10.1002/mp.12344.
|
[35]
|
A. Katsevich, Theoretically exact filtered backprojection-type inversion algorithm for spiral CT, SIAM Journal on Applied Mathematics, 62 (2002), 2012-2026.
doi: 10.1137/S0036139901387186.
|
[36]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980, 2014.
|
[37]
|
W. Kool, H. V. Hoof and M. Welling, Attention, learn to solve routing problems!, preprint, arXiv: 1803.08475, 2018.
|
[38]
|
Y. Li, Deep Reinforcement Learning: An overview, arXiv: 1701.07274, 2017.
|
[39]
|
L. Ly and Y.-H. R. Tsai, Autonomous exploration, reconstruction, and surveillance of 3d environments aided by deep learning, arXiv: 1809.06025, 2018.
|
[40]
|
S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
|
[41]
|
M. T. McCann, K. H. Jin and M. Unser, Convolutional neural networks for inverse problems in imaging: A review, IEEE Signal Processing Magazine, 34 (2017), 85-95.
|
[42]
|
C. McCollough, Tu-fg-207a-04: Overview of the low dose ct grand challenge, Medical Physics, 43 (2016), 3760-3760.
doi: 10.1118/1.4957556.
|
[43]
|
A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu and A. Singh, Learning heuristics over large graphs via deep reinforcement learning, preprint, arXiv: 1903.03332, 2019.
|
[44]
|
V. Mnih, K. Kavukcuoglu and D. Silver, Human-level control through deep reinforcement learning, Nature, 518 (2015).
|
[45]
|
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland and G. Ostrovski, et al., Human-level control through deep reinforcement learning, Nature, 518 (2015), 529-533.
|
[46]
|
K. A. Mohan, S. V. Venkatakrishnan, E. B. Gulsoy, J. W. Gibbs, X. Xiao, M. D. Graef, P. W. Voorhees and C. A. Bouman, Timbir: A method for time-space reconstruction from interlaced views, IEEE Transactions on Computational Imaging, 1 (2015), 96-111.
doi: 10.1109/TCI.2015.2431913.
|
[47]
|
E. Monier, N. Brun, T. Oberlin, X. Li, M. Tenc and N. Dobigeon, Fast reconstruction of atomic-scale stem-eels images from sparse sampling, Ultramicroscopy, 2020.
|
[48]
|
K. Mueller, Selection of optimal views for computed tomography reconstruction, Patent WO, Jan, 28 (2011).
|
[49]
|
K. Mueller, R. Yagel and J. J. Wheller, Anti-aliased three-dimensional cone-beam reconstruction of low-contrast objects with algebraic methods, IEEE Transactions On Medical Imaging, 6 (1999), 519-537.
|
[50]
|
R. Ohbuchi and M. Aono, Quasi-Monte Carlo Rendering With Adaptive Sampling, 1996.
|
[51]
|
S. Osher, Z. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686.
|
[52]
|
J. Park, J. Jung, A. P. Gupta, J. Soh, C. Jeong, J. Ahn, S. Cho, K. -H. Yoon, D. Kim, M. Mativenga, et al., Multi-beam x-ray source based on carbon nanotube emitters for tomosynthesis system, in Medical Imaging 2020: Physics of Medical Imaging, International Society for Optics and Photonics, 11312 (2020), 113122.
|
[53]
|
G. Placidi, M. Alecci and A. Sotgiu, Theory of adaptive acquisition method for image reconstruction from projections and application to epr image, Journal of Magnetic Resonance, (1995), 50–57.
|
[54]
|
S. RL, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical Physics, 2 (1985), 252-5.
|
[55]
|
A. Ron and Z. Shen, Affine systems in $ L_{2}(\mathbb{R}^{d})$: The analysis of the analysis operator, Journal of Functional Analysis, 148 (1997), 408-447.
doi: 10.1006/jfan.1996.3079.
|
[56]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physical D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[57]
|
J. Schulman and F. Wolski, Proximal policy optimization algorithms, arXiv: 1707.06347v2, 2017.
|
[58]
|
M. W. Seeger and H. Nickisch, Compressed sensing and bayesian experimental design, in Proceedings of the 25th International Conference on Machine Learning, (2008), 912–919.
|
[59]
|
B. Settles, Active Iearning Literature Survey, Technical report, University of Wisconsin-Madison Department of Computer Sciences, 2009.
|
[60]
|
C. Shen, Y. Gonzalez, L. Chen, S. B. Jiang and X. Jia, Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning, IEEE Transactions on Medical Imaging, 37 (2018), 1430-1439.
|
[61]
|
E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in medicine and biology, 4777, 2008.
|
[62]
|
D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller, Deterministic policy gradient algorithms, In International Conference on Machine Learning, (2014), 387–395.
|
[63]
|
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 2018.
|
[64]
|
R. S. Sutton, D. A. McAllester, S. P. Singh and Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, In Advances in Neural Information Processing Systems, (2000), 1057–1063.
|
[65]
|
C. Tai and E. Weinan, Multiscale adaptive representation of signals: I. The basic framework, The Journal of Machine Learning Research, 17 (2016), 4875-4912.
|
[66]
|
G. Wang, A perspective on deep imaging, IEEE Access, 4 (2016), 8914-8924.
|
[67]
|
Z. Wang and G. R. Arce, Variable density compressed image sampling, Image Processing, IEEE Transactions, 19 (2010), 264-270.
doi: 10.1109/TIP.2009.2032889.
|
[68]
|
G. Wang, M. Kalra and C. G.Orton, Machine learning will transform radiology significantly within the next 5 years, Medical Physics, 44 (2017), 2041-2044.
|
[69]
|
G. Wang, J. Chu Ye, K. Mueller and J. A Fessler, Image reconstruction is a new frontier of machine learning, IEEE Transactions on Medical Imaging, 37 (2018), 1289-1296.
|
[70]
|
G. Wang and H. Yu, A scheme for multisource interior tomography, Medical physics, 36 (2009), 3575-3581.
|
[71]
|
C. J. Watkins and P. Dayan, Q-learning, Machine learning, 8 (1992), 279-292.
|
[72]
|
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and G. Wang, Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018) 1348–1357.
|
[73]
|
L. Yu, M. Shiung, D. Jondal and C. H. McCollough, Development and validation of a practical lower-dose-simulation tool for optimizing computed tomography scan protocols, Journal of Computer Assisted Tomography, 36 (20124), 477-487.
|
[74]
|
J. Zhang, G. Yang, Y. Lee, Y. Cheng, B. Gao, Q. Qiu, J. Lu and O. Zhou, A multi-beam x-ray imaging system based on carbon nanotube field emitters, in Medical Imaging 2006: Physics of Medical Imaging, International Society for Optics and Photonics, 6142 (2006), 614204.
|
[75]
|
S. Zhang, Z. Song, G. D. P. Godaliyadda, D. H. Ye, A. U. Chowdhury, A. Sengupta, G. T. Buzzard, C. A. Bouman and G. J. Simpson, Dynamic sparse sampling for confocal raman microscopy, Analytical Chemistry, 90 (2018), 4461-4469.
|
[76]
|
Y. Zhang, G. M. D. Godaliyadda, N. Ferrier, E. B. Gulsoy, C. A. Bouman and C. Phatak, Slads-Net: Supervised Learning Approach for Dynamic Sampling Using Deep Neural Networks, Electronic Imaging, Computational Imaging XVI, 2018.
|
[77]
|
H. -M. Zhang and B. Dong, A review on deep learning in medical image reconstruction, Journal of the Operations Research Society of China, 8 (2020) 311–340.
doi: 10.1007/s40305-019-00287-4.
|
[78]
|
Z. Zhang, X. Liang, X. Dong, Y. Xie and G. Cao, A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution, IEEE Transactions on Medical Imaging, 37 (2018), 1407-1417.
|
[79]
|
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 34 (2008), 8-34.
|