February  2022, 16(1): 215-228. doi: 10.3934/ipi.2021047

Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc

1. 

Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Johann Radon Institute of Computational and Applied Mathematics (RICAM), Altenbergerstrasse 69, 4040 Linz, Austria

3. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

* Corresponding author

Received  January 2021 Revised  May 2021 Published  February 2022 Early access  July 2021

In two dimensions, we consider the problem of inversion of the attenuated $ X $-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with $ A $-analytic functions in the sense of Bukhgeim.

Citation: Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047
References:
[1]

E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505. doi: 10.1515/jiip.1997.5.6.491.

[2]

E. V. ArzubovA. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20. 

[3]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.  doi: 10.1088/0266-5611/20/2/006.

[4]

J. Boman, On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26. 

[5]

J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005. doi: 10.1088/0266-5611/32/12/125005.

[6]

J. Boman and J. -O. Strömberg, Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.  doi: 10.1007/BF02922067.

[7]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.  doi: 10.1215/S0012-7094-87-05547-5.

[8]

A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995).

[9]

R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80. 

[10]

D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66. 

[11]

H. FujiwaraK. Sadiq and A. Tamasan, Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.  doi: 10.1137/19M1282921.

[12]

H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications

[13]

S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4757-1463-0.

[14]

S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.  doi: 10.1515/jiip.2007.040.

[15]

W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.  doi: 10.1007/BF01181411.

[16]

P. Kuchment and I. Shneiberg, Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.  doi: 10.1080/00036819408840258.

[17]

F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.  doi: 10.3934/ipi.2018019.

[18]

N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992.

[19]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.

[20]

F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.  doi: 10.1088/0266-5611/17/1/309.

[21]

F. NooM. DefriseJ. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.  doi: 10.1088/0266-5611/23/2/011.

[22]

F. Noo and J. M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.  doi: 10.1088/0266-5611/17/5/308.

[23]

R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.  doi: 10.1016/S0764-4442(01)01965-6.

[24]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.  doi: 10.1088/0266-5611/18/3/310.

[25]

S. Okada and D. Elliott, The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.  doi: 10.1002/mana.19911530105.

[26]

X. PanC. Kao and C. Metz, A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.  doi: 10.1088/0266-5611/18/3/319.

[27]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267. 

[28]

H. Rullgård, An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.  doi: 10.1007/BF02385485.

[29]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.  doi: 10.1088/0266-5611/20/3/008.

[30]

K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.  doi: 10.1090/S0002-9947-2014-06307-1.

[31]

K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.  doi: 10.1137/140984282.

[32]

K. SadiqO. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.  doi: 10.1016/j.jmaa.2016.04.018.

[33]

F. G. Tricomi, Integral Equations, Interscience, New York, 1957.

[34]

H. Widom, Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.  doi: 10.2307/1993367.

show all references

References:
[1]

E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505. doi: 10.1515/jiip.1997.5.6.491.

[2]

E. V. ArzubovA. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20. 

[3]

G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.  doi: 10.1088/0266-5611/20/2/006.

[4]

J. Boman, On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26. 

[5]

J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005. doi: 10.1088/0266-5611/32/12/125005.

[6]

J. Boman and J. -O. Strömberg, Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.  doi: 10.1007/BF02922067.

[7]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.  doi: 10.1215/S0012-7094-87-05547-5.

[8]

A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995).

[9]

R. Clackdoyle and M. Defrise, Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80. 

[10]

D. V. Finch, The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66. 

[11]

H. FujiwaraK. Sadiq and A. Tamasan, Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.  doi: 10.1137/19M1282921.

[12]

H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications

[13]

S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4757-1463-0.

[14]

S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.  doi: 10.1515/jiip.2007.040.

[15]

W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.  doi: 10.1007/BF01181411.

[16]

P. Kuchment and I. Shneiberg, Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.  doi: 10.1080/00036819408840258.

[17]

F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.  doi: 10.3934/ipi.2018019.

[18]

N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992.

[19]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.

[20]

F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.  doi: 10.1088/0266-5611/17/1/309.

[21]

F. NooM. DefriseJ. D. Pack and R. Clackdoyle, Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.  doi: 10.1088/0266-5611/23/2/011.

[22]

F. Noo and J. M. Wagner, Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.  doi: 10.1088/0266-5611/17/5/308.

[23]

R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.  doi: 10.1016/S0764-4442(01)01965-6.

[24]

R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.  doi: 10.1088/0266-5611/18/3/310.

[25]

S. Okada and D. Elliott, The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.  doi: 10.1002/mana.19911530105.

[26]

X. PanC. Kao and C. Metz, A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.  doi: 10.1088/0266-5611/18/3/319.

[27]

J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267. 

[28]

H. Rullgård, An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.  doi: 10.1007/BF02385485.

[29]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.  doi: 10.1088/0266-5611/20/3/008.

[30]

K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.  doi: 10.1090/S0002-9947-2014-06307-1.

[31]

K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.  doi: 10.1137/140984282.

[32]

K. SadiqO. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.  doi: 10.1016/j.jmaa.2016.04.018.

[33]

F. G. Tricomi, Integral Equations, Interscience, New York, 1957.

[34]

H. Widom, Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.  doi: 10.2307/1993367.

Figure 1.  Geometric setup: $ \partial{ \Omega^+} = \Lambda\cup L $
Figure 2.  Setting of numerical experiments. The gray regions correspond to the support of the source $ f $, whereas the dotted circles delineate regions of high attenuation. Note that $ f $ is to be reconstructed only in the upper semi-disc
Figure 3.  Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ obtained by numerical computation of the attenuated Radon transform (4). The red curves are their polar coordinate representation $ \{ (u(\zeta,\theta),\theta) \::\: \theta \in {{\mathbf S}^ 1}\} $ and that at $ \zeta = (0,1) $ is magnified in the right graph. The pink areas show the regions of (known) higher absorption
Figure 4.  Numerical solutions on $ L $ to the singular integral equation (13), from $ u_{0} $ to $ u_{-5} $, real parts (left) and imaginary parts (right)
Figure 5.  Numerically reconstructed source $ f $ in $ \Omega^{+} $ (left), and its section on $ y = -\sqrt{3}x $ (right), which is indicated by the dotted line in the left figure
Figure 6.  Partial measurement data $ u(\zeta,\theta)|_{\Lambda\times {{\mathbf S}^ 1}} $ with $ 10.9\% $ noise in the relative $ L^2 $ norm, depicted in the same manner as in Figure 3.
Figure 7.  Numerically reconstructed source $ f $ from partial measurement data with $ 10.9\% $ noise shown in Figure 6.
[1]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[2]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[3]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[4]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[5]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[6]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[7]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[8]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[9]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[10]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[11]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[12]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[13]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[14]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[15]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[16]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[17]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[18]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[19]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[20]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (234)
  • HTML views (300)
  • Cited by (0)

[Back to Top]