
-
Previous Article
Refined stability estimates in electrical impedance tomography with multi-layer structure
- IPI Home
- This Issue
-
Next Article
Identification and stability of small-sized dislocations using a direct algorithm
Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc
1. | Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan |
2. | Johann Radon Institute of Computational and Applied Mathematics (RICAM), Altenbergerstrasse 69, 4040 Linz, Austria |
3. | Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA |
In two dimensions, we consider the problem of inversion of the attenuated $ X $-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with $ A $-analytic functions in the sense of Bukhgeim.
References:
[1] |
E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505.
doi: 10.1515/jiip.1997.5.6.491. |
[2] |
E. V. Arzubov, A. L. Bukhgeim and S. G. Kazantsev,
Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.
|
[3] |
G. Bal,
On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
doi: 10.1088/0266-5611/20/2/006. |
[4] |
J. Boman,
On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.
|
[5] |
J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005.
doi: 10.1088/0266-5611/32/12/125005. |
[6] |
J. Boman and J. -O. Strömberg,
Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.
doi: 10.1007/BF02922067. |
[7] |
J. Boman and E. T. Quinto,
Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.
doi: 10.1215/S0012-7094-87-05547-5. |
[8] |
A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995). |
[9] |
R. Clackdoyle and M. Defrise,
Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80.
|
[10] |
D. V. Finch,
The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66.
|
[11] |
H. Fujiwara, K. Sadiq and A. Tamasan,
Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.
doi: 10.1137/19M1282921. |
[12] |
H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications |
[13] |
S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4757-1463-0. |
[14] |
S. G. Kazantsev and A. A. Bukhgeim,
Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.
doi: 10.1515/jiip.2007.040. |
[15] |
W. Koppelman and J. D. Pincus,
Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.
doi: 10.1007/BF01181411. |
[16] |
P. Kuchment and I. Shneiberg,
Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.
doi: 10.1080/00036819408840258. |
[17] |
F. Monard,
Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.
doi: 10.3934/ipi.2018019. |
[18] |
N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992. |
[19] |
F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. |
[20] |
F. Natterer,
Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309. |
[21] |
F. Noo, M. Defrise, J. D. Pack and R. Clackdoyle,
Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.
doi: 10.1088/0266-5611/23/2/011. |
[22] |
F. Noo and J. M. Wagner,
Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.
doi: 10.1088/0266-5611/17/5/308. |
[23] |
R. G. Novikov,
Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.
doi: 10.1016/S0764-4442(01)01965-6. |
[24] |
R. G. Novikov,
On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.
doi: 10.1088/0266-5611/18/3/310. |
[25] |
S. Okada and D. Elliott,
The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.
doi: 10.1002/mana.19911530105. |
[26] |
X. Pan, C. Kao and C. Metz,
A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.
doi: 10.1088/0266-5611/18/3/319. |
[27] |
J. Radon,
Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267.
|
[28] |
H. Rullgård,
An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.
doi: 10.1007/BF02385485. |
[29] |
H. Rullgård,
Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.
doi: 10.1088/0266-5611/20/3/008. |
[30] |
K. Sadiq and A. Tamasan,
On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.
doi: 10.1090/S0002-9947-2014-06307-1. |
[31] |
K. Sadiq and A. Tamasan,
On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.
doi: 10.1137/140984282. |
[32] |
K. Sadiq, O. Scherzer and A. Tamasan,
On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.
doi: 10.1016/j.jmaa.2016.04.018. |
[33] |
F. G. Tricomi, Integral Equations, Interscience, New York, 1957. |
[34] |
H. Widom,
Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.
doi: 10.2307/1993367. |
show all references
References:
[1] |
E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505.
doi: 10.1515/jiip.1997.5.6.491. |
[2] |
E. V. Arzubov, A. L. Bukhgeim and S. G. Kazantsev,
Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.
|
[3] |
G. Bal,
On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
doi: 10.1088/0266-5611/20/2/006. |
[4] |
J. Boman,
On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.
|
[5] |
J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005.
doi: 10.1088/0266-5611/32/12/125005. |
[6] |
J. Boman and J. -O. Strömberg,
Novikov's inversion formula for the attenuated Radon transform–A new approach, J. Geom. Anal., 14 (2004), 185-198.
doi: 10.1007/BF02922067. |
[7] |
J. Boman and E. T. Quinto,
Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948.
doi: 10.1215/S0012-7094-87-05547-5. |
[8] |
A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems (eds. M. M. Lavrentev and L. Ya. Savalev), Plenum, New York, (1995). |
[9] |
R. Clackdoyle and M. Defrise,
Tomographic reconstruction in the 21st century, IEEE Signal Processing Magazine, 27 (2010), 60-80.
|
[10] |
D. V. Finch,
The attenuated x-ray transform: Recent developments, Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47 (2003), 47-66.
|
[11] |
H. Fujiwara, K. Sadiq and A. Tamasan,
Numerical reconstruction of radiative sources in an absorbing and non-diffusing scattering medium in two dimensions, SIAM J. Imaging Sci., 13 (2020), 535-555.
doi: 10.1137/19M1282921. |
[12] |
H. Fujiwara, K. Sadiq and A. Tamasan, On a local inversion of the X-ray transform from one sided data, Recent developments on inverse problems for PDE and their applications |
[13] |
S. Helgason, The Radon Transform, 2$^{nd}$ edition, Birkhäuser, Boston, 1999.
doi: 10.1007/978-1-4757-1463-0. |
[14] |
S. G. Kazantsev and A. A. Bukhgeim,
Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.
doi: 10.1515/jiip.2007.040. |
[15] |
W. Koppelman and J. D. Pincus,
Spectral representations for finite Hilbert transformations, Math. Z., 71 (1959), 399-407.
doi: 10.1007/BF01181411. |
[16] |
P. Kuchment and I. Shneiberg,
Some inversion formulae in the single photon emission computed tomography, Appl. Anal., 53 (1994), 221-231.
doi: 10.1080/00036819408840258. |
[17] |
F. Monard,
Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12 (2018), 433-460.
doi: 10.3934/ipi.2018019. |
[18] |
N. I. Muskhelishvili, Singular Integral Equations, 2$^{nd}$ edition, Dover, New York, 1992. |
[19] |
F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. |
[20] |
F. Natterer,
Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309. |
[21] |
F. Noo, M. Defrise, J. D. Pack and R. Clackdoyle,
Image reconstruction from truncated data in single-photon emission computed tomography with uniform attenuation, Inverse Problems, 23 (2007), 645-667.
doi: 10.1088/0266-5611/23/2/011. |
[22] |
F. Noo and J. M. Wagner,
Image reconstruction in 2D SPECT with $180^\circ$ acquisition, Inverse Problems, 17 (2001), 1357-1371.
doi: 10.1088/0266-5611/17/5/308. |
[23] |
R. G. Novikov,
Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.
doi: 10.1016/S0764-4442(01)01965-6. |
[24] |
R. G. Novikov,
On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems, 18 (2002), 677-700.
doi: 10.1088/0266-5611/18/3/310. |
[25] |
S. Okada and D. Elliott,
The finite Hilbert transform in $L^2$, Math. Nachr., 153 (1991), 43-56.
doi: 10.1002/mana.19911530105. |
[26] |
X. Pan, C. Kao and C. Metz,
A family of $\pi$-scheme exponential Radon transforms and the uniqueness of their inverses, Inverse Problems, 18 (2002), 825-836.
doi: 10.1088/0266-5611/18/3/319. |
[27] |
J. Radon,
Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat., 69 (1917), 262-267.
|
[28] |
H. Rullgård,
An explicit inversion formula for the exponential Radon transform using data from $180^\circ$, Ark. Mat., 42 (2004), 353-362.
doi: 10.1007/BF02385485. |
[29] |
H. Rullgård,
Stability of the inverse problem for the attenuated Radon transform with $180^\circ$ data, Inverse Problems, 20 (2004), 781-797.
doi: 10.1088/0266-5611/20/3/008. |
[30] |
K. Sadiq and A. Tamasan,
On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.
doi: 10.1090/S0002-9947-2014-06307-1. |
[31] |
K. Sadiq and A. Tamasan,
On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47 (2015), 2001-2021.
doi: 10.1137/140984282. |
[32] |
K. Sadiq, O. Scherzer and A. Tamasan,
On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442 (2016), 31-49.
doi: 10.1016/j.jmaa.2016.04.018. |
[33] |
F. G. Tricomi, Integral Equations, Interscience, New York, 1957. |
[34] |
H. Widom,
Singular integral equations in $L_p$, Trans. Amer. Math. Soc., 97 (1960), 131-160.
doi: 10.2307/1993367. |





[1] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[2] |
Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 |
[3] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[4] |
François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713 |
[5] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[6] |
Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879 |
[7] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[8] |
Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
[9] |
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325 |
[10] |
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721 |
[11] |
Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649 |
[12] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[13] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[14] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[15] |
Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029 |
[16] |
Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341 |
[17] |
Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693 |
[18] |
Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023 |
[19] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[20] |
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]