[1]
|
A. Achim, A. Bezerianos and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imag., 20 (2001), 772-783.
doi: 10.1109/42.938245.
|
[2]
|
R. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65, Academic Press, New York, London, 1975.
|
[3]
|
E. S. Agency, Esa earth online, https://earth.esa.int/handbooks/asar/CNTR1-4.html.
|
[4]
|
S. Aja, C. Alberola and A. Ruiz, Fuzzy anisotropic diffusion for speckle filtering, In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), IEEE, 2 (2001), 1261-1264.
|
[5]
|
F. Argenti, A. Lapini, T. Bianchi and L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag., 1 (2013), 6-35.
doi: 10.1109/MGRS.2013.2277512.
|
[6]
|
K. T. Atanassov, Intuitionistic fuzzy sets: Past, present and future, In EUSFLAT Conf., (2003), 12-19.
|
[7]
|
G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.
doi: 10.1137/060671814.
|
[8]
|
G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, vol. 147, Appl. Math. Sci. Springer, New York, 2006.
|
[9]
|
A. Averbuch, B. Epstein, N. Rabin and E. Turkel, Edge-enhancement postprocessing using artificial dissipation, IEEE Trans. Image Process., 15 (2006), 1486-1498.
doi: 10.1109/TIP.2006.875734.
|
[10]
|
J. J. J. Babu and G. F. Sudha, Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation, Biomed. Signal. Process. Control., 23 (2016), 93-103.
|
[11]
|
G. Baravdish, O. Svensson, M. Gulliksson and Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082-1111.
doi: 10.1093/imamat/hxz027.
|
[12]
|
Y. Becerikli and T. M. Karan, A new fuzzy approach for edge detection, In International Work-Conference on Artificial Neural Networks, Springer, (2005), 943-951.
doi: 10.1007/11494669_116.
|
[13]
|
K. Binaee and R. P. Hasanzadeh, An ultrasound image enhancement method using local gradient based fuzzy similarity, Biomed. Signal. Process. Control., 13 (2014), 89-101.
doi: 10.1016/j.bspc.2014.03.013.
|
[14]
|
C. B. Burckhardt, Speckle in ultrasound B-mode scans, IEEE Trans. Sonics Ultrason., 25 (1978), 1-6.
doi: 10.1109/T-SU.1978.30978.
|
[15]
|
Y. Cao, J. Yin, Q. Liu and M. Li, A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 11 (2010), 253-261.
doi: 10.1016/j.nonrwa.2008.11.004.
|
[16]
|
T. Chaira and A. K. Ray, Segmentation using fuzzy divergence, Pattern Recognit. Lett., 24 (2003), 1837-1844.
doi: 10.1016/S0167-8655(03)00007-2.
|
[17]
|
T. Chaira and A. Ray, A new measure using intuitionistic fuzzy set theory and its application to edge detection, Appl. Soft Comput., 8 (2008), 919-927.
doi: 10.1016/j.asoc.2007.07.004.
|
[18]
|
P. Dewaele, P. Wambacq, A. Oosterlinck and J.-L. Marchand, Comparison of some speckle reduction techniques for sar images, In Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'., 10th Annual International, IEEE, (1990), 2417-2422.
doi: 10.1109/IGARSS.1990.689028.
|
[19]
|
G. Dong, Z. Guo and B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal, In Abstr. Appl. Anal., 2013, (2013).
doi: 10.1155/2013/912373.
|
[20]
|
eoPortal: Sharing Earth Observation Resources, Kompsat-5, https://directory.eoportal.org/web/eoportal/satellite-missions/k/kompsat-5.
|
[21]
|
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC press, 2015.
|
[22]
|
L. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, Providence, RI, 1998.
|
[23]
|
V. S. Frost, J. A. Stiles, K. S. Shanmugan and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., (1982), 157-166.
doi: 10.1109/TPAMI.1982.4767223.
|
[24]
|
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2002.
|
[25]
|
J. W. Goodman, Some fundamental properties of speckle, JOSA, 66 (1976), 1145-1150.
doi: 10.1364/JOSA.66.001145.
|
[26]
|
Y. Hao, J. Xu, S. Li and X. Zhang, A variational model based on split Bregman method for multiplicative noise removal, Int. J. Electron. Commun., 69 (2015), 1291-1296.
doi: 10.1016/j.aeue.2015.05.009.
|
[27]
|
K. H. Ho and N. Ohnishi, Fedge fuzzy edge detection by fuzzy categorization and classification of edges, In International Workshop on Fuzzy Logic in Artificial Intelligence, Springer, 1188 (1995), 182-196.
doi: 10.1007/3-540-62474-0_14.
|
[28]
|
C. Hua and T. Jinwen, Speckle reduction of synthetic aperture radar images based on fuzzy logic, In First International Workshop on Education Technology and Computer Science, 1, IEEE, (2009), 933-937.
doi: 10.1109/ETCS.2009.212.
|
[29]
|
Y.-M. Huang, M. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), 20-40.
doi: 10.1137/080712593.
|
[30]
|
S. K. Jain and R. K. Ray, Edge detectors based telegraph total variational model for image filtering, In Information Systems Design and Intelligent Applications, Springer, 433 (2016), 119-126.
doi: 10.1007/978-81-322-2755-7_13.
|
[31]
|
S. K. Jain and R. K. Ray, Non-linear diffusion models for despeckling of images: Achievements and future challenges, IETE Technical Review, 37 (2020), 66-82.
doi: 10.1080/02564602.2019.1565960.
|
[32]
|
S. K. Jain, R. K. Ray and A. Bhavsar, Iterative solvers for image denoising with diffusion models: A comparative study, Comput. Math. Appl., 70 (2015), 191-211.
doi: 10.1016/j.camwa.2015.04.009.
|
[33]
|
S. K. Jain, R. K. Ray and A. Bhavsar, A nonlinear coupled diffusion system for image despeckling and application to ultrasound images, Circ. Syst. Signal Pr., 38 (2019), 1654-1683.
doi: 10.1007/s00034-018-0913-6.
|
[34]
|
J. S. Jin, Y. Wang and J. Hiller, An adaptive nonlinear diffusion algorithm for filtering medical images, IEEE Trans. Inf. Technol. Biomed., 4 (2000), 298-305.
doi: 10.1109/4233.897062.
|
[35]
|
Z. Jin and X. Yang, Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl., 362 (2010), 415-426.
doi: 10.1016/j.jmaa.2009.08.036.
|
[36]
|
G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.
|
[37]
|
D. T. Kuan, A. A. Sawchuk, T. C. Strand and P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Trans. Pattern Anal. Mach. Intell., 7 (1985), 165-177.
doi: 10.1109/TPAMI.1985.4767641.
|
[38]
|
J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168.
doi: 10.1109/TPAMI.1980.4766994.
|
[39]
|
M. Liu and Q. Fan, A modified convex variational model for multiplicative noise removal, J. Vis. Commun. Image Represent., 36 (2016), 187-198.
doi: 10.1016/j.jvcir.2016.01.014.
|
[40]
|
Q. Liu, X. Li and T. Gao, A nondivergence p-Laplace equation in a removing multiplicative noise model, Nonlinear Anal. Real World Appl., 14 (2013), 2046-2058.
doi: 10.1016/j.nonrwa.2013.02.008.
|
[41]
|
S. Majee, S. K. Jain, R. K. Ray and A. K. Majee, On the development of a coupled nonlinear telegraph-diffusion model for image restoration, Comput. Math. Appl., 80 (2020), 1745-1766.
doi: 10.1016/j.camwa.2020.08.010.
|
[42]
|
S. Majee, R. K. Ray and A. K. Majee, A gray level indicator-based regularized telegraph diffusion model: Application to image despeckling, SIAM J. Imaging Sci., 13 (2020), 844-870.
doi: 10.1137/19M1283033.
|
[43]
|
A. Mittal, A. K. Moorthy and A. C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Trans. Image Process., 21 (2012), 4695-4708.
doi: 10.1109/TIP.2012.2214050.
|
[44]
|
M. Nadeem, A. Hussain and A. Munir, Fuzzy logic based computational model for speckle noise removal in ultrasound images, Multimed. Tools. Appl., 78 (2019), 18531-18548.
doi: 10.1007/s11042-019-7221-4.
|
[45]
|
R. Prager, A. Gee, G. Treece and L. Berman, Speckle detection in ultrasound images using first order statistics, University of Cambridge, Department of Engineering.
|
[46]
|
V. S. Prasath and R. Delhibabu, Image restoration with fuzzy coefficient driven anisotropic diffusion, In International Conference on Swarm, Evolutionary, and Memetic Computing, 8947, Springer, (2015), 145-155.
doi: 10.1007/978-3-319-20294-5_13.
|
[47]
|
V. Ratner and Y. Y. Zeevi, Image enhancement using elastic manifolds, In Proceedings of the 14th International Conference on Image Analysis and Processing, ICIAP 2007, IEEE, (2007), 769-774.
doi: 10.1109/ICIAP.2007.4362869.
|
[48]
|
V. Ratner and Y. Y. Zeevi, Denoising-enhancing images on elastic manifolds, IEEE Trans. Image Process., 20 (2011), 2099-2109.
doi: 10.1109/TIP.2011.2118221.
|
[49]
|
L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, In Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, 2003,103-119.
doi: 10.1007/0-387-21810-6_6.
|
[50]
|
X. Shan, J. Sun and Z. Guo, Multiplicative noise removal based on the smooth diffusion equation, J. Math. Imag. Vis., 61 (2019), 763-779.
doi: 10.1007/s10851-018-00870-z.
|
[51]
|
J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321.
doi: 10.1137/070689954.
|
[52]
|
J. Song and H. Tizhoosh, Fuzzy anisotropic diffusion: A rule-based approach, In Proceeding of the 7th World Multiconference on Systemics, Cyebernetics and Informatics, (2003), 241-246.
|
[53]
|
E. Szmidt and J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505-518.
doi: 10.1016/S0165-0114(98)00244-9.
|
[54]
|
D. N. Thanh, V. S. Prasath and S. Dvoenko et al., An adaptive method for image restoration based on high-order total variation and inverse gradient, Signal, Image and Video Process., 14 (2020), 1189-1197.
doi: 10.1007/s11760-020-01657-9.
|
[55]
|
M. Tur, K.-C. Chin and J. W. Goodman, When is speckle noise multiplicative?, Applied Optics, 21 (1982), 1157-1159.
doi: 10.1364/AO.21.001157.
|
[56]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[57]
|
J. Weickert, Anisotropic Diffusion in Image Processing, Teubner Stuttgart, 1998.
|
[58]
|
Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260-1270.
doi: 10.1109/TIP.2002.804276.
|
[59]
|
E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley & Sons, 1983.
|
[60]
|
W. Zhang, J. Li and Y. Yang, A class of nonlocal tensor telegraph-diffusion equations applied to coherence enhancement, Comput. Math. Appl., 67 (2014), 1461-1473.
doi: 10.1016/j.camwa.2014.02.013.
|
[61]
|
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang and B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process., 24 (2015), 249-260.
doi: 10.1109/TIP.2014.2376185.
|
[62]
|
Z. Zhou, Z. Guo, D. Zhang and B. Wu, A nonlinear diffusion equation-based model for ultrasound speckle noise removal, J. Nonlinear Sci., 28 (2018), 443-470.
doi: 10.1007/s00332-017-9414-1.
|