[1]
|
L. Abrahamsson, Orthogonal grid generation for two-dimensional ducts, J. Comput. Appl. Math., 34 (1991), 305-314.
doi: 10.1016/0377-0427(91)90091-W.
|
[2]
|
L. Abrahamsson and H. O. Kreiss, Numerical solution of the coupled mode equations in duct acoustics, J. Comput. Phy., 111 (1994), 1-14.
doi: 10.1006/jcph.1994.1038.
|
[3]
|
S. Acosta, S. Chow, J. Taylor and V. Villamizar, On the multi-frequency inverse source problem in heterogeneous media, Inverse Problems, 28 (2012), 075013.
doi: 10.1088/0266-5611/28/7/075013.
|
[4]
|
H. Ammari, E. Iakovleva and H. Kang, Reconstruction of a small inclusion in a two-dimensional open waveguide, SIAM J. Appl. Math., 65 (2005), 2107-2127.
doi: 10.1137/040615389.
|
[5]
|
G. Bao and P. Li, Inverse medium scattering problems for electromagnetic waves, SIAM J. Appl. Math., 65 (2005), 2049-2066.
doi: 10.1137/040607435.
|
[6]
|
G. Bao and F. Triki, Reconstruction of a defect in an open waveguide, Sci. China Math., 56 (2013), 2539-2548.
doi: 10.1007/s11425-013-4696-8.
|
[7]
|
G. Bao and F. Triki, Stability for the multifrequency inverse medium problem, J. Differential Equations, 269 (2020), 7106-7128.
doi: 10.1016/j.jde.2020.05.021.
|
[8]
|
J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.
doi: 10.1006/jcph.1994.1159.
|
[9]
|
L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 095004.
doi: 10.1088/0266-5611/30/9/095004.
|
[10]
|
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inverse Problems, 24 (2008), 015018.
doi: 10.1088/0266-5611/24/1/015018.
|
[11]
|
D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.
doi: 10.1088/0266-5611/12/4/003.
|
[12]
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-02835-3.
|
[13]
|
S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition, Inverse Problems, 22 (2006), 1227-1246.
doi: 10.1088/0266-5611/22/4/007.
|
[14]
|
A. S. B.-B. Dhia, L. Chesnel and S. A. Nazarov, Perfect transmission invisibility for waveguides with sound hard walls, J. Math. Pures Appl., 111 (2018), 79-105.
doi: 10.1016/j.matpur.2017.07.020.
|
[15]
|
H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press New York, 1972.
|
[16]
|
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.
doi: 10.1137/1.9781611972030.ch1.
|
[17]
|
M. Isaev and R. G. Novikov, Hölder-logarithmic stability in Fourier synthesis, Inverse Problems, 36 (2020), 125003.
doi: 10.1088/1361-6420/abb5df.
|
[18]
|
V. Isakov and S. Lu, Increasing stability in the inverse source problem with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.
doi: 10.1137/17M1112704.
|
[19]
|
M. Kharrat, O. Bareille, W. Zhou and M. Ichchou, Nondestructive assessment of plastic elbows using torsional waves: Numerical and experimental investigations, Journal of Nondestructive Evaluation, 35 (2016), 1-14.
doi: 10.1007/s10921-015-0324-6.
|
[20]
|
M. Kharrat, M. N. Ichchou, O. Bareille and W. Zhou, Pipeline inspection using a torsional guided-waves inspection system. part 1: Defect identification, International Journal of Applied Mechanics, 6 (2014).
doi: 10.1142/S1758825114500343.
|
[21]
|
Y. Y. Lu, Exact one-way methods for acoustic waveguides, Math. Comput. Simulation, 50 (1999), 377-391.
doi: 10.1016/S0378-4754(99)00111-1.
|
[22]
|
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
|
[23]
|
M. Sini and N. T. Thanh, Inverse acoustic obstacle scattering problems using multifrequency measurements, Inverse Probl. Imaging, 6 (2012), 749-773.
doi: 10.3934/ipi.2012.6.749.
|
[24]
|
J. Todd, The condition of the finite segment of the Hilbert matrix, National Bureau of Standarts, Applied Mathematics Series, (1954), 109–119.
|